Some Approximation Problems in Differential Equations
微分方程中的一些逼近问题
基本信息
- 批准号:9973266
- 负责人:
- 金额:$ 12.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dieci9973266The investigator and his collaborators analyze and implement techniques to tackle several problems in differential equations and matrix analysis. The following topics are studied: (1) smooth orthonormal factorizations of parameter dependent matrices and connected applications,(2) computation of Lyapunov exponents with applications, (3) stability and bifurcations of invariant tori, (4) computation of matrix exponential and other functions of a matrix, and Riccati equations. In all cases, theoretical analysis and extensive computational testing are undertaken, and codes for the outlined tasks are developed. Specific aims include implementation of techniques to compute QR and SVD of fundamental matrix solutions, techniques to update invariant subspaces factorizations and SVDs of parameter dependent matrices, and applications connected to such techniques; implementation of methods to compute Lyapunov exponents and related stability information of continuous dynamical systems; techniques to compute the Lyapunov type numbers of Fenichel and use these quantities to monitor continuability and bifurcations of invariant tori; approximation of the exponential of a matrix in case the matrix is block triangular, and other aspects of computation of functions of a matrix.To model physical phenomena in a compact way, differential equations are probably the most powerful tool we have. Differential equations can model complicated chemical interactions and biological phenomena, manufacturing plants, robot and satellite motions, transport properties of materials, and a host of other phenomena of interest in the applied sciences. However, typically one can only guarantee that differential equations have a solution, but it cannot be provided in closed form. Moreover, in a typical situation, there will be uncertainties in the phenomenon under study, and these will show up as parameters in the differential equation model. Loosely speaking, the fundamental question is then to understand the stability of solutions (as parameters change). Now, suppose that we have obtained (at a high price) detailed information on the solution to our model for a certain parameter value in the model. We may hope that if we change the parameter just slightly, we will be able to obtain detailed information for the new parameter value at a fraction of the cost we previously paid. Basically, this expectation forms the principle of so-called "continuation techniques." The investigator studies approximation techniques to solve differential equations which aim at assessing the stability of the solutions and at exploiting continuation techniques. The goal is to eventually obtain approximation of a differential equation model in a way which will give the complete picture of solutions of the model as its parameters vary inside a certain (physical) range. This goal finds its concrete realization in the study of quantities which serve as indicators of stability (the so-called Lyapunov exponents) and in computer programs which approximate these quantities. The investigator also uses these Lyapunov exponents for predicting bifurcation phenomena and assessing error propagation when solving differential equations. Finally, the investigator studies continuation techniques for matrix factorizations and produces computer programs for continuation techniques.
Dieci 9973266研究员和他的合作者分析和实施技术,以解决微分方程和矩阵分析中的几个问题。 研究了以下几个问题:(1)参数相关矩阵的光滑正交分解及其应用,(2)李雅普诺夫指数的计算及其应用,(3)不变环面的稳定性和分支,(4)矩阵指数和矩阵的其它函数的计算,以及Riccati方程。 在所有情况下,进行理论分析和广泛的计算测试,并制定了所列任务的代码。 具体目标包括实现计算基本矩阵解的QR和SVD的技术,更新参数相关矩阵的不变子空间分解和SVD的技术,以及与这些技术相关的应用;实现计算连续动态系统的李雅普诺夫指数和相关稳定性信息的方法;计算Fenichel的李雅普诺夫型数的技术,并使用这些量来监控不变环面的连续性和分叉;在矩阵是块三角形的情况下,矩阵的指数近似,以及矩阵函数计算的其他方面。为了以紧凑的方式建模物理现象,微分方程可能是我们拥有的最强大的工具。 微分方程可以模拟复杂的化学相互作用和生物现象,制造工厂,机器人和卫星运动,材料的运输特性,以及应用科学中的许多其他感兴趣的现象。 然而,通常只能保证微分方程有解,但不能以封闭形式提供。 此外,在典型情况下,所研究的现象中将存在不确定性,这些不确定性将在微分方程模型中显示为参数。 不严格地说,基本问题是理解解的稳定性(当参数变化时)。 现在,假设我们已经(以高昂的代价)获得了关于模型中某个参数值的模型解的详细信息。 我们可能希望,如果我们稍微改变参数,我们将能够获得新参数值的详细信息,而花费的成本只是以前的一小部分。 基本上,这种期望形成了所谓的“延续技术”的原则。“研究人员研究近似技术,以解决微分方程,旨在评估解决方案的稳定性,并在利用延续技术。 我们的目标是最终获得近似的微分方程模型的方式,这将给出完整的图片的解决方案的模型,因为它的参数在一定的(物理)范围内变化。 这一目标在研究作为稳定性指标的量(所谓的李雅普诺夫指数)和近似这些量的计算机程序中找到了具体的实现。 研究人员还使用这些李雅普诺夫指数预测分岔现象和评估误差传播时,求解微分方程。 最后,研究人员继续矩阵分解技术,并产生计算机程序的延续技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Dieci其他文献
LIMIT CYCLES FOR REGULARIZED DISCONTINUOUS DYNAMICAL SYSTEMS WITH A HYPERPLANE OF DISCONTINUITY
- DOI:
doi:10.3934/dcdsb.2017165 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Luca Dieci;Cinzia Elia;Pi Dingheng - 通讯作者:
Pi Dingheng
Continuation of Singular Value Decompositions
- DOI:
10.1007/s00009-005-0038-6 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:1.200
- 作者:
Luca Dieci;Maria Grazia Gasparo;Alessandra Papini - 通讯作者:
Alessandra Papini
Coalescing points for eigenvalues of banded matrices depending on parameters with application to banded random matrix functions
- DOI:
10.1007/s11075-018-0525-z - 发表时间:
2018-04-24 - 期刊:
- 影响因子:2.000
- 作者:
Luca Dieci;Alessandra Papini;Alessandro Pugliese - 通讯作者:
Alessandro Pugliese
Smoothness of Hessenberg and Bidiagonal Forms
- DOI:
10.1007/s00009-008-0133-6 - 发表时间:
2008-05-29 - 期刊:
- 影响因子:1.200
- 作者:
Luca Dieci;M. Grazia Gasparo;Alessandra Papini - 通讯作者:
Alessandra Papini
Solving semi-discrete optimal transport problems: star shapedeness and Newton’s method
- DOI:
10.1007/s11075-024-01903-y - 发表时间:
2024-08-15 - 期刊:
- 影响因子:2.000
- 作者:
Luca Dieci;Daniyar Omarov - 通讯作者:
Daniyar Omarov
Luca Dieci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Dieci', 18)}}的其他基金
Support for USA participants in the Dynamics of Evolution Equations conference
支持美国参加进化方程动力学会议
- 批准号:
1562181 - 财政年份:2016
- 资助金额:
$ 12.95万 - 项目类别:
Standard Grant
Increasing the number of mathematics graduate students and of professional mathematicians entering the workforce
增加数学研究生和进入劳动力市场的专业数学家的数量
- 批准号:
1060333 - 财政年份:2011
- 资助金额:
$ 12.95万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Approximation of Lyapunov Exponents
FRG:合作研究:李雅普诺夫指数的近似
- 批准号:
0139895 - 财政年份:2002
- 资助金额:
$ 12.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Approximation Problems in Differential Equations
数学科学:微分方程中的一些近似问题
- 批准号:
9625813 - 财政年份:1996
- 资助金额:
$ 12.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Conference on Dynamical Numerical Analysis
数学科学:动态数值分析会议
- 批准号:
9503447 - 财政年份:1995
- 资助金额:
$ 12.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Solution of Matrix Differential Equations and Approximation of Invariant Tori
数学科学:矩阵微分方程的数值解和不变环面的逼近
- 批准号:
9306412 - 财政年份:1993
- 资助金额:
$ 12.95万 - 项目类别:
Continuing Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
- 批准号:
9207070 - 财政年份:1992
- 资助金额:
$ 12.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Aspects of Riccati Transformation, Invariant Manifold Approximation, and Connected Issues
数学科学:Riccati 变换的数值方面、不变流形逼近和相关问题
- 批准号:
9104564 - 财政年份:1991
- 资助金额:
$ 12.95万 - 项目类别:
Standard Grant
On the Numerical Solution of Differential and Riccati Equations, and Related Matters
微分方程和Riccati方程的数值解及相关问题
- 批准号:
8802762 - 财政年份:1988
- 资助金额:
$ 12.95万 - 项目类别:
Standard Grant
相似海外基金
Diophantine approximation, related problems, and applications to the existence or non-existence of arithmetic progressions
丢番图近似、相关问题以及算术级数存在或不存在的应用
- 批准号:
22KJ0375 - 财政年份:2023
- 资助金额:
$ 12.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
- 批准号:
RGPIN-2019-05258 - 财政年份:2022
- 资助金额:
$ 12.95万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
- 批准号:
RGPIN-2020-06423 - 财政年份:2022
- 资助金额:
$ 12.95万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms and Hardness of Approximation for Optimization Problems
优化问题的逼近算法和逼近难度
- 批准号:
RGPIN-2018-04677 - 财政年份:2022
- 资助金额:
$ 12.95万 - 项目类别:
Discovery Grants Program - Individual
Development and analysis of methods of approximation for NP-hard optimization problems
NP 困难优化问题的近似方法的开发和分析
- 批准号:
RGPIN-2021-03828 - 财政年份:2022
- 资助金额:
$ 12.95万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: The Unique Games Conjecture and Related Problems in Hardness of Approximation
AF:小:独特的博弈猜想及近似难度中的相关问题
- 批准号:
2200956 - 财政年份:2022
- 资助金额:
$ 12.95万 - 项目类别:
Standard Grant
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
- 批准号:
RGPIN-2019-04051 - 财政年份:2022
- 资助金额:
$ 12.95万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2022
- 资助金额:
$ 12.95万 - 项目类别:
Discovery Grants Program - Individual
Development and analysis of methods of approximation for NP-hard optimization problems
NP 困难优化问题的近似方法的开发和分析
- 批准号:
RGPIN-2021-03828 - 财政年份:2021
- 资助金额:
$ 12.95万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
- 批准号:
RGPIN-2019-04197 - 财政年份:2021
- 资助金额:
$ 12.95万 - 项目类别:
Discovery Grants Program - Individual