Numerical Methods for Multimaterial and Multiphase Flows

多材料和多相流的数值方法

基本信息

项目摘要

9973291This proposal concerns the development and implementation of algorithms for compressible multimaterial and multiphase flows. In both types of flows, a major numerical stumbling block is accounting correctly for thermodynamical relaxation processes and equilibrium between the fluid components. Failure to do so is the reason why state-of-the-art single fluid algorithms often do not work in multifluid flows. Karni was among the first to realize that the key to robust multifluid algorithms is good control over the pressure field, and has been active in developing and implementing algorithms for complex multimaterial flows. It is proposed: (i) to develop multimaterial algorithms for stiff fluids with surface tension. Numerical issues such as stiffness, singular source treatment, interface sharpening and efficient time integration will be studied. Comparison with asymptotic theories and experiments of oscillating bubbles will be conducted; (ii) to extend multimaterial algorithms to multiphase flow models, in particular to the 2-velocity 2-pressure multiphase model which is sufficiently general and is time hyperbolic. Numerical aspects such as global conservation, positivity, efficient integration of stiff source terms will be addressed. The methods will be validated against numerical benchmark tests. (iii) to use multimaterial computations to 'validate' multiphase flow models by numerical averaging. Studying mean flow properties might provide numerical Hugoniot curves for the multiphase (nonconservative) systems, and might shed light on the controversial issue of constitutive closures. This part will be done in collaboration with H.M. Glaz of the University of Maryland.Multimaterial and multiphase flows are flows consisting of several 'pure' gas or liquid components. For example, hydrogen and air, air in water, liquid droplets in air or even dust in air. Depending on the application, the interest may be to follow the motion of the interface that separates the different fluids and study its dynamics and stability. For example, computing the dynamics of a an oscillating gas bubble in water is useful for understanding the propagation of sound waves underwater, and for studying underwater explosions. In order to burn fuel efficiently in combustion chambers one needs to understand mixing processes, which in turn are governed by the dynamics of, say, a hydrogen jet in air. In some other applications, the number of interfaces may be huge and following the dynamics of individual interfaces is not only impossible but is also not interesting. For example, in bubbly liquids such as soda cans, in liquid suspensions such as in sprays or in dusty gases, the motion of a single bubble or droplet is not of interest. Rather, the interest is in understanding how the fluid mixture behaves 'on average'. Both types of flows lead to mathematical models that need to be solved on computers, and are computationally very intensive. They are also not easy to compute. The 'average' models are also mathematically less well understood. Experiments, while available, are difficult to conduct and are restricted by the accuracy of the instruments and their often large margins of error. Computer simulations provide therefore a complementary tool which may shed light and give insight into the complex problems of interest. The past few years have seen a growing interest in developing methods suitable for computing multimaterial/multiphase flows and in their efficient implementation to studying complex flow phenomena. This project concerns further development and implementation of such methods.
9973291本提案涉及可压缩多材料和多相流算法的开发和实现。 在这两种类型的流动中,一个主要的数值绊脚石是正确地解释流体组分之间的热力学松弛过程和平衡。 不这样做是最先进的单流体算法通常不适用于多流体流的原因。 Karni是第一个意识到强大的多流体算法的关键是对压力场的良好控制的人之一,并且一直积极开发和实施复杂多材料流的算法。 提出:(i)发展具有表面张力的刚性流体的多物质算法。 数值问题,如刚度,奇异源处理,接口锐化和有效的时间积分将进行研究。 振荡气泡的渐近理论和实验的比较将进行;(ii)多材料算法扩展到多相流模型,特别是2-速度2-压力多相模型,这是足够的一般性和时间双曲线。 数值方面,如全球保护,积极性,有效的整合刚性源项将得到解决。 这些方法将根据数值基准测试进行验证。(iii)使用多材料计算,通过数值平均来“验证”多相流模型。研究平均流动特性可能提供数值Hugoniot曲线的多相(非保守)系统,并可能揭示有争议的问题的本构封闭。 这一部分将与H.M.合作完成。多物质流和多相流是由几种“纯”气体或液体成分组成的流。 例如,氢气和空气,水中的空气,空气中的液滴甚至空气中的灰尘。 根据应用,兴趣可能是跟随分离不同流体的界面的运动,并研究其动力学和稳定性。 例如,计算水中振荡气泡的动力学对于理解水下声波的传播和研究水下爆炸是有用的。 为了在燃烧室中有效地燃烧燃料,人们需要了解混合过程,而混合过程又由空气中的氢气射流的动力学控制。 在其他一些应用程序中,接口的数量可能是巨大的,并且跟踪单个接口的动态不仅是不可能的,而且也是没有意义的。例如,在诸如汽水罐的气泡液体中,在诸如喷雾或含尘气体的液体悬浮液中,单个气泡或液滴的运动是不感兴趣的。 相反,兴趣在于理解流体混合物的“平均”行为。 这两种类型的流动导致需要在计算机上求解的数学模型,并且计算非常密集。 它们也不容易计算。“平均”模型在数学上也不太好理解。 实验虽然可以进行,但很难进行,并受到仪器准确性及其往往很大的误差幅度的限制。 因此,计算机模拟提供了一种补充工具,可以揭示和洞察感兴趣的复杂问题。 在过去的几年里,人们对开发适合于计算多物质/多相流的方法以及有效地实现对复杂流动现象的研究越来越感兴趣。 本项目涉及进一步发展和实施这些方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Smadar Karni其他文献

Compressible bubbles with surface tension
  • DOI:
    10.1007/bfb0106630
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Smadar Karni
  • 通讯作者:
    Smadar Karni
Local error analysis for approximate solutions of hyperbolic conservation laws
双曲守恒定律近似解的局部误差分析
A second order kinetic scheme for gas dynamics on arbitrary grids
  • DOI:
    10.1016/j.jcp.2004.11.002
  • 发表时间:
    2005-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin Keen;Smadar Karni
  • 通讯作者:
    Smadar Karni
A Non-oscillatory Central Scheme for One-Dimensional Two-Layer Shallow Water Flows along Channels with Varying Width
一维两层浅水变宽河道非振荡中心方案
  • DOI:
    10.1007/s10915-012-9642-3
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jorge Balbas;Smadar Karni
  • 通讯作者:
    Smadar Karni
A Relaxation Scheme for the Two-Layer Shallow Water System
两层浅水系统缓和方案
  • DOI:
    10.1007/978-3-540-75712-2_11
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Abgrall;Smadar Karni
  • 通讯作者:
    Smadar Karni

Smadar Karni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Smadar Karni', 18)}}的其他基金

Computational methods for materials science, high frequency wave propagation, and quantum mechanics
材料科学、高频波传播和量子力学的计算方法
  • 批准号:
    1417053
  • 财政年份:
    2014
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Continuing Grant
Numerical Methods for Balance Laws with Applications to Shallow Water and Multiphase Flows
平衡定律的数值方法及其在浅水和多相流中的应用
  • 批准号:
    0609766
  • 财政年份:
    2006
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Propagating Fronts By A Consistent Primitive Algorithm With Application To Bubble Dynamics
数学科学:通过一致的原始算法传播前沿并应用于气泡动力学
  • 批准号:
    9496155
  • 财政年份:
    1994
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Standard Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9306023
  • 财政年份:
    1993
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Propagating Fronts By A Consistent Primitive Algorithm With Application To Bubble Dynamics
数学科学:通过一致的原始算法传播前沿并应用于气泡动力学
  • 批准号:
    9203768
  • 财政年份:
    1992
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 13.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了