POWRE: Artificial Neural Networks for Spatial Aggregation and Disaggregation Problems
POWRE:用于空间聚合和分解问题的人工神经网络
基本信息
- 批准号:9973474
- 负责人:
- 金额:$ 7.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2001-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in satellite remote sensing (RS) and geographic information systems (GIS) technologies are contributing to rapid expansion in the availability and use of spatial information about Earth's environment at local to global scales. They have also led to the use of new methods in spatial analysis based on computational intelligence (CI). Artificial Neural Networks (ANN) are one type of CI that have been widely used in geography and RS for classification, change detection, optimization and spatial modeling. The main objective of this research is to apply ANN for spatial scaling, particularly aggregation and disaggregation resulting from the use of multiscale and multiresolution data in GIS and RS. Three specific areas of geographical enquiry will be addressed: first, characterization of land cover at the global scale, including improved estimates of land cover area as well as changes in land cover area; second, developing models integrating socio-economic and physical data collected at different spatial scales (e.g., Mediterranean Desertification and Landuse or MEDALUS); and third, the population census zone design problem, in which data are aggregated from fine to coarser spatial scales. This type of spatial analysis and modeling has a number of practical applications including census geography, global change research, land surface characterization, strategic landuse and transportation planning, environmental analysis and planning, and allocation of education, health, and other services. This research, which will focus on analytical and methodological issues centered around ANN applications in geography and remote sensing, will involve collaboration between the principal investigator and two leading European researchers. The POWRE award will enhance the principal investigator's research and educational experience, as well as contribute to her academic advancement and contribute to her leadership potential in the field in which women are significantly underrepresented.
卫星遥感和地理信息系统技术的进步正在推动从地方到全球范围内迅速扩大关于地球环境的空间信息的提供和使用。 它们还导致了基于计算智能(CI)的空间分析新方法的使用。 人工神经网络(ANN)是人工智能的一种,在地理学和遥感学中被广泛用于分类、变化检测、优化和空间建模。本研究的主要目的是应用人工神经网络的空间尺度,特别是聚合和解聚所造成的使用多尺度和多分辨率的数据在GIS和RS。 将涉及地理调查的三个具体领域:第一,全球范围内土地覆盖的特征,包括改进土地覆盖面积的估计以及土地覆盖面积的变化;第二,开发综合不同空间尺度上收集的社会经济和自然数据的模型(例如,地中海荒漠化和土地利用或MEDALUS);第三,人口普查区设计问题,其中数据从细到粗的空间尺度汇总。 这种类型的空间分析和建模具有许多实际应用,包括人口普查地理学,全球变化研究,地表特征,战略土地利用和交通规划,环境分析和规划,以及教育,卫生和其他服务的分配。 这项研究,这将集中在围绕人工神经网络在地理和遥感应用的分析和方法问题,将涉及主要研究者和两个领先的欧洲研究人员之间的合作。 POWRE奖将增强首席研究员的研究和教育经验,并有助于她的学术进步,并有助于她在妇女人数严重不足的领域的领导潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sucharita Gopal其他文献
Sucharita Gopal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sucharita Gopal', 18)}}的其他基金
NSF GK-12 Graduate STEM Fellows in K-12 Education GLACIER-Global Change Initiative-Education & Research
NSF GK-12 K-12 教育 STEM 研究生研究员 GLACIER-全球变革倡议-教育
- 批准号:
0947950 - 财政年份:2010
- 资助金额:
$ 7.36万 - 项目类别:
Continuing Grant
Spatial Determinants of Insectivorous Bat Diversity: Pattern and Process in a Paleotropical Rain Forest
食虫蝙蝠多样性的空间决定因素:古热带雨林的模式和过程
- 批准号:
0108384 - 财政年份:2001
- 资助金额:
$ 7.36万 - 项目类别:
Continuing Grant
Assessment of Landuse and Land Cover Change Using Remote Sensing and Artificial Neural Networks
利用遥感和人工神经网络评估土地利用和土地覆盖变化
- 批准号:
9513889 - 财政年份:1996
- 资助金额:
$ 7.36万 - 项目类别:
Continuing Grant
Neural Spatial Interaction Predictors and Pattern Detectors
神经空间交互预测器和模式检测器
- 批准号:
9300633 - 财政年份:1993
- 资助金额:
$ 7.36万 - 项目类别:
Standard Grant
相似海外基金
SkyANN: Skyrmionic Artificial Neural Networks
SkyANN:Skyrmionic 人工神经网络
- 批准号:
10108371 - 财政年份:2024
- 资助金额:
$ 7.36万 - 项目类别:
EU-Funded
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 7.36万 - 项目类别:
Standard Grant
Learning mechanisms for perceptual decisions in biological and artificial neural systems
生物和人工神经系统中感知决策的学习机制
- 批准号:
BB/X013235/1 - 财政年份:2023
- 资助金额:
$ 7.36万 - 项目类别:
Research Grant
Emergent embodied cognition in shallow, biological and artificial, neural networks
浅层生物和人工神经网络中的突现认知
- 批准号:
BB/X01343X/1 - 财政年份:2023
- 资助金额:
$ 7.36万 - 项目类别:
Research Grant
Artificial staining with deep neural model practial verification
人工染色与深度神经模型实践验证
- 批准号:
23K14473 - 财政年份:2023
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 7.36万 - 项目类别:
Standard Grant
This project will leverage artificial neural networks to automatically build various components of particle filters.
该项目将利用人工神经网络自动构建粒子滤波器的各种组件。
- 批准号:
2841890 - 财政年份:2023
- 资助金额:
$ 7.36万 - 项目类别:
Studentship
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 7.36万 - 项目类别:
Flexible Artificial Synaptic Devices and Their Neural Networks Based on Perovskite-Spinel Nanocomposite Thin Films
基于钙钛矿-尖晶石纳米复合薄膜的柔性人工突触装置及其神经网络
- 批准号:
23KJ0418 - 财政年份:2023
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 7.36万 - 项目类别:
Standard Grant














{{item.name}}会员




