Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems

合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化

基本信息

  • 批准号:
    2234031
  • 负责人:
  • 金额:
    $ 22.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This collaborative project between University of North Carolina at Charlotte (UNCC) and Clemson University (Clemson) aims at addressing significant national challenges and needs, namely in the fields of artificial intelligence and clean electric power and energy systems. While growing in popularity and diversity of applications, deep learning (DL) methods nonetheless confront challenges especially for modeling complex systems. These include lack of robustness, scalability, and composability. The research outcomes of this collaborative project will be: i) mathematical tools for understanding and designing a graph-optimized Cellular Computational Network (CCN) for complex system modeling and optimization; CCN suggests a composable modularity that can divide a large system into small subsystems with corresponding computational cells and ii) empowering the operation of carbon-free electric power distribution systems (EPDSs), with goals of improving energy sustainability (while avoiding climate disasters), energy security, and electricity infrastructure reliability. Furthermore, this collaborative project will provide unique research training to graduate and undergraduate students in the disciplines of artificial intelligence, machine learning, and power systems engineering at the two institutions. The state-of-the-art smart grid equipment at Real-Time Power and Intelligent Systems Lab at Clemson and high-performance computing systems and AI equipment at Synergistic Human+AI Research lab at UNCC will be used to impact outreach activities to high school students. Underrepresented minority and women groups will be recruited to participate in the research at the two institutions. Therefore, this project contributes to the creation of a new, diverse workforce knowledgeable in machine learning and AI, smart grid/power system technologies, and renewable energy. Our approach to address the challenging problem of complex system modeling and optimization constitute a novel blend of interdisciplinary study in statistical learning theory, graph theory, control theory, and optimization theory that will lead to novel dynamic system modeling. The project proposes a principled framework and mathematical validation to 1) automatically infer a graph topology from data, 2) develop multi-resolution graph evaluation for reinforcement learning (RL)-based refinement, 3) provide novel and stable reward function design principle for a continuously evolving CCN model, and thus 4) optimize the voltage profile in an EPDS with distributed energy resources. Overall, our principled mathematical tools for graph-optimized CCN models will broaden the scope of theory and applications in an electric power distribution system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
北卡罗来纳州夏洛特大学(UNCC)和克莱姆森大学(克莱姆森)之间的这一合作项目旨在应对重大的国家挑战和需求,即在人工智能和清洁电力和能源系统领域。虽然应用程序越来越流行和多样化,但深度学习(DL)方法仍然面临挑战,特别是在建模复杂系统时。这些问题包括缺乏健壮性、可伸缩性和可组合性。该合作项目的研究成果将是:i)理解和设计用于复杂系统建模和优化的图形优化细胞计算网络(CCN)的数学工具; CCN提出了一种可组合的模块化,可以将大型系统划分为具有相应计算单元的小型子系统,以及ii)授权无碳电力分配系统(EPDS)的操作,其目标是提高能源可持续性(同时避免气候灾害)、能源安全和电力基础设施可靠性。此外,该合作项目将为两所机构的人工智能,机器学习和电力系统工程学科的研究生和本科生提供独特的研究培训。克莱姆森实时电力和智能系统实验室最先进的智能电网设备以及联合国赔偿委员会协同人类+人工智能研究实验室的高性能计算系统和人工智能设备将用于影响高中生的外联活动。将招募代表性不足的少数群体和妇女团体参加这两个机构的研究。因此,该项目有助于创建一个新的,多样化的劳动力,在机器学习和人工智能,智能电网/电力系统技术和可再生能源方面的知识。 我们的方法来解决复杂系统建模和优化的挑战性问题,构成了一个新的跨学科研究的统计学习理论,图论,控制理论和优化理论,将导致新的动态系统建模的混合。该项目提出了一个原则性框架和数学验证,以1)从数据中自动推断图形拓扑,2)为基于强化学习(RL)的细化开发多分辨率图形评估,3)为不断发展的CCN模型提供新颖且稳定的奖励函数设计原则,从而4)优化具有分布式能源的EPDS中的电压分布。总的来说,我们用于图形优化的CCN模型的原则性数学工具将拓宽配电系统的理论和应用范围。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minwoo Lee其他文献

Fabrication and independent control of patterned polymer gate for a few-layer WSe2 field-effect transistor
多层WSe2场效应晶体管图案化聚合物栅极的制作与独立控制
  • DOI:
    10.1063/1.4961990
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    S. J. Hong;Min Park;Hojin Kang;Minwoo Lee;D. Jeong;Y. Park
  • 通讯作者:
    Y. Park
Depth Sensor Combined Display Contents Control System
深度传感器组合显示内容控制系统
CrossAug: A Contrastive Data Augmentation Method for Debiasing Fact Verification Models
CrossAug:一种用于消除事实验证模型偏差的对比数据增强方法
共鳴光電子分光による有機半導体/TiO_2薄膜界面の電子構造の直接観測
共振光电子能谱直接观察有机半导体/TiO_2薄膜界面电子结构
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seongyong Kim;Kohei Imura;Minwoo Lee;Tetsuya Narushima;Hiromi Okamoto;Dae Hong Jeong;佐藤幹夫
  • 通讯作者:
    佐藤幹夫
Heuristic, Systematic, and Affective Components of Online Service Reviews : Impact on Intra-Organizational Adoption and Sharing
在线服务评论的启发式、系统性和情感成分:对组织内采用和共享的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minwoo Lee;Kiljae K. Lee;Kyung Young Lee;A. DeFranco
  • 通讯作者:
    A. DeFranco

Minwoo Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
  • 批准号:
    2134274
  • 财政年份:
    2022
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: MoDL: Occams Razor in Deep and Physical Learning
合作研究:RI:媒介:MoDL:深度学习和物理学习中的奥卡姆斯剃刀
  • 批准号:
    2212519
  • 财政年份:
    2022
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
  • 批准号:
    2134178
  • 财政年份:
    2022
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: MoDL: Occams Razor in Deep and Physical Learning
合作研究:RI:媒介:MoDL:深度学习和物理学习中的奥卡姆斯剃刀
  • 批准号:
    2212520
  • 财政年份:
    2022
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
  • 批准号:
    2134148
  • 财政年份:
    2021
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
  • 批准号:
    2134223
  • 财政年份:
    2021
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCALE MoDL: Adaptivity of Deep Neural Networks
合作研究:SCALE MoDL:深度神经网络的适应性
  • 批准号:
    2134214
  • 财政年份:
    2021
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SCALE MoDL: Adaptivity of Deep Neural Networks
合作研究:SCALE MoDL:深度神经网络的适应性
  • 批准号:
    2134106
  • 财政年份:
    2021
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCALE MoDL: Adaptivity of Deep Neural Networks
合作研究:SCALE MoDL:深度神经网络的适应性
  • 批准号:
    2134145
  • 财政年份:
    2021
  • 资助金额:
    $ 22.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了