Continuous and Discrete Nonlocal Evolution Equations and Applications
连续和离散非局部演化方程及应用
基本信息
- 批准号:9975451
- 负责人:
- 金额:$ 6.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9975451ChmajThis project concerns the dynamics of both spatially discrete and continuous but non-local evolutionary systems. In particular, we are concerned with the existence, stability, and variety of spatial patterns in interacting and reacting systems which exhibit threshold behavior. Not just stationary patterns but also those which evolve in a predictable way. The systems of equations arise in the field of computational neural networks designed to perform specialized tasks such as automatic image recognition. They also arise in population dynamics, in models of phase transitions, in models of the primary visual cortex of the brain, and in computer simulation of a wide variety of continuum processes where discretization is the standard approach. Results from the project will have a direct impact on the understanding of computational experiments and on the assumptions on which the mathematical models of many physical phenomena rest.From one perspective, the project explores some of the basic challenges of present day material science: The modeling of processes which cause and accompany change of phases or crystalline variants of a substance. New mathematical models are being continually proposed, with the hope of shedding insight into the basic physics of these processes. Successful modeling can offer help in the development of new high performance materials, which is vital to economic and other national interests. From another perspective, the theoretical study of neural networks will lead to the development of automatic pattern recognition, useful in such widely diverse areas as text analysis, target identification, and image enhancement.
9975451Chmaj这个项目涉及空间离散和连续但非局部进化系统的动力学。 特别是,我们关心的存在性,稳定性和各种空间图案的相互作用和反应系统表现出阈值行为。 不仅仅是固定的模式,还有那些以可预测的方式演变的模式。 方程组出现在计算神经网络领域,旨在执行自动图像识别等专门任务。 它们也出现在人口动态,在相变模型,在大脑的初级视觉皮层模型,并在计算机模拟各种连续过程中离散化是标准的方法。 该项目的结果将对理解计算实验和许多物理现象的数学模型所依赖的假设产生直接影响。从一个角度来看,该项目探讨了当今材料科学的一些基本挑战:导致和伴随物质相变或结晶变体的过程建模。新的数学模型不断被提出,希望能够深入了解这些过程的基本物理学。成功的建模可以为开发新的高性能材料提供帮助,这对经济和其他国家利益至关重要。从另一个角度来看,神经网络的理论研究将导致自动模式识别的发展,在文本分析,目标识别和图像增强等广泛的领域都很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Chmaj其他文献
Adam Chmaj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Chmaj', 18)}}的其他基金
Continuous and Discrete Nonlocal Evolution Equations and Applications
连续和离散非局部演化方程及应用
- 批准号:
0096182 - 财政年份:2000
- 资助金额:
$ 6.28万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Standard Grant
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Standard Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Fellowship
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
- 批准号:
2407300 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Continuing Grant
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
- 批准号:
24K20238 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
- 批准号:
2400147 - 财政年份:2024
- 资助金额:
$ 6.28万 - 项目类别:
Standard Grant