Statistical Methods for Environmental Social Science

环境社会科学统计方法

基本信息

  • 批准号:
    9978238
  • 负责人:
  • 金额:
    $ 38.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-12-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

Recently, there has been an explosion of both public and research interest in the cause-and-effect relationships between humans and their environment. Much of this interest has been directed at answering questions of environmental justice, i.e., determining whether certain sociodemographic subgroups bear an undue share of certain environmental hazards. Helping facilitate this interest has been the concurrent emergence of geographic information systems (GISs), sophisticated computer programs for "layering" multiple data sources over a common study area. However, such programs at present have no facility for statistical inference, which is necessary for determining whether the data offer "significant" evidence of injustice, or whether the findings could just as well have arisen completely by chance.This project focuses on developing necessary statistical hierarchical modeling methods for the improved analysis of such data sets, as well as corresponding user-friendly computing tools to enable use of the methods by non-expert statistical support staff. The project will focus on at least three environmental social science application areas. First, statistical methods for handling misaligned areal data (of the sort so easily mapped by GISs) will be considered. Here the methods must accommodate data aggregated over misaligned regional boundaries (say, zip codes and census tracts), as well as boundaries which evolve over time. Second, the methods will be extended to the case where data are not only misaligned, but of different types. For example, one variable might be available only as a regional aggregate (say, percent foreign-born by zip code), while another is available only at certain points in space (say, daily particulate matter levels at a collection of fixed monitoring stations). Finally, the methods will be further extended to incorporate formal tools for resolving multiple and conflicting priorities and goals. Achieving environmental equity often involves making tradeoffs between efficiency (i.e., maximizing the overall difference between costs and benefits) and equity (i.e., an evenhanded distribution of these costs and benefits). Benefits accruing to society will include improved environmental justice assessments, a systematic approach for handling data at different scales, and practical strategies for resolving conflicting analytic priorities and goals. These should be of interest and use to public policymakers as they grapple with the problems of cleaning up existing environmental hazards, as well as equitably siting future potentially hazardous facilities.
最近,公众和研究人员对人类与其环境之间的因果关系的兴趣激增。 这种兴趣很大程度上是为了回答环境正义问题,即确定某些社会人口亚群体是否过度承担某些环境危害。 地理信息系统(GIS)的同时出现,有助于促进这种兴趣,这是一种复杂的计算机程序,用于在公共研究区域“分层”多个数据源。 然而,此类程序目前没有统计推断的设施,而统计推断对于确定数据是否提供了不公正的“重大”证据,或者调查结果是否完全是偶然出现是必要的。该项目的重点是开发必要的统计分层建模方法,以改进对此类数据集的分析,以及相应的用户友好的计算工具,以使非专家统计支持人员能够使用这些方法。 该项目将重点关注至少三个环境社会科学应用领域。 首先,将考虑处理未对齐的区域数据(地理信息系统很容易绘制的那种数据)的统计方法。 这里的方法必须适应在未对齐的区域边界(例如邮政编码和人口普查区)以及随时间变化的边界上聚合的数据。 其次,这些方法将扩展到数据不仅未对齐而且类型不同的情况。 例如,一个变量可能仅作为区域总量提供(例如,按邮政编码列出的外国出生百分比),而另一个变量仅在空间中的某些点提供(例如,一组固定监测站的每日颗粒物水平)。 最后,这些方法将进一步扩展,纳入正式工具来解决多个且相互冲突的优先事项和目标。 实现环境公平通常涉及在效率(即最大化成本和收益之间的总体差异)和公平(即这些成本和收益的公平分配)之间进行权衡。 为社会带来的好处将包括改进的环境正义评估、处理不同规模数据的系统方法以及解决相互冲突的分析优先事项和目标的实用策略。 当公共政策制定者努力解决清除现有环境危害以及公平地安置未来潜在危险设施的问题时,这些应该会引起公共政策制定者的兴趣和使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradley Carlin其他文献

Introduction to “Cuts in Bayesian graphical models” by M. Plummer
  • DOI:
    10.1007/s11222-014-9538-1
  • 发表时间:
    2014-12-10
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Bradley Carlin
  • 通讯作者:
    Bradley Carlin

Bradley Carlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradley Carlin', 18)}}的其他基金

Travel Support for the 4th International Joint IMS-ISBA Conference
第四届 IMS-ISBA 国际联合会议的差旅支持
  • 批准号:
    1008884
  • 财政年份:
    2010
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Travel Support for the 3rd International Joint IMS-ISBA Conference
第三届 IMS-ISBA 国际联合会议的差旅支持
  • 批准号:
    0733734
  • 财政年份:
    2007
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
  • 批准号:
    RGPIN-2017-06267
  • 财政年份:
    2022
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods for identifying unobserved structure in complex ecological and environmental data
识别复杂生态和环境数据中未观察到的结构的统计方法
  • 批准号:
    DGECR-2022-00456
  • 财政年份:
    2022
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Launch Supplement
Statistical methods for identifying unobserved structure in complex ecological and environmental data
识别复杂生态和环境数据中未观察到的结构的统计方法
  • 批准号:
    RGPIN-2022-04750
  • 财政年份:
    2022
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
  • 批准号:
    RGPIN-2018-05578
  • 财政年份:
    2022
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
  • 批准号:
    RGPIN-2017-06267
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Grants Program - Individual
SBIR Phase I: Operational Seasonal Forecasting of Environmental Data using Machine Learning and Statistical Methods
SBIR 第一阶段:使用机器学习和统计方法对环境数据进行业务季节性预测
  • 批准号:
    2042853
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Standard Grant
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
  • 批准号:
    RGPIN-2018-05578
  • 财政年份:
    2021
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
  • 批准号:
    RGPIN-2017-06267
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
  • 批准号:
    RGPIN-2018-05578
  • 财政年份:
    2020
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
  • 批准号:
    RGPIN-2017-06267
  • 财政年份:
    2019
  • 资助金额:
    $ 38.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了