Enhancing the Mathematical Understanding of Students in Chemistry
增强化学学生的数学理解
基本信息
- 批准号:9981144
- 负责人:
- 金额:$ 23.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interdisciplinary (99)The objective of this project is to bring mathematicians and chemists together to increase chemistry students' knowledge of mathematics and its role in chemistry, so that they will be able to use the tools and language of mathematics to solve scientific problems. The project has the following specific components: development of a new type of chemistry placement exam which will identify those students who cannot solve multi-level non-algorithmic word problems; development of a pre-calculus level mathematics course on problem solving in science; development of a new structure for the Organic Chemistry laboratory component that reinforces skills from General Chemistry and Mathematics; development of laboratory modules on Linear Algebra and Differential Equations in Physical Chemistry; and development of one upper division elective courses on mathematical chemistry.This project will address several important themes and areas. A more accurate placement exam coupled with a problem-solving course for those who need it will help all students to have the confidence and skills necessary to succeed in General Chemistry and to continue studying science. The mathematics and chemistry faculty will each learn more about each other's disciplines as a result of working closely together on this project, stimulating both teaching and research. The project integrates technology where appropriate into all levels of the chemistry curriculum. Its overall objectives are to provide students with the mathematical skills to succeed in chemistry and as well other sciences. It has the potential to produce models and materials that can be used nationally and have a broad national impact on science instruction.
跨学科(99)这个项目的目标是把数学家和化学家聚集在一起,增加化学学生的数学知识及其在化学中的作用,使他们能够使用数学的工具和语言来解决科学问题。该项目有以下具体组成部分:开发一种新型的化学分班考试,以确定那些不能解决多层次非算法文字问题的学生;开发一门关于科学问题解决的微积分前数学课程;为有机化学实验室部分开发一种新的结构,以加强普通化学和数学技能;开发物理化学中的线性代数和微分方程的实验单元;以及开发一个数学化学的高年级选修课程。这个项目将涉及几个重要的主题和领域。一个更准确的安置考试,再加上为那些谁需要解决问题的课程,将帮助所有学生有信心和必要的技能,在普通化学取得成功,并继续学习科学。数学和化学系将通过在这个项目上密切合作,更多地了解彼此的学科,促进教学和研究。该项目在适当的情况下将技术融入各级化学课程。它的总体目标是为学生提供数学技能,以在化学和其他科学方面取得成功。它有可能产生可在全国使用的模型和材料,并对科学教学产生广泛的全国影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erica Flapan其他文献
Dehn surgery on knots-- tracing the evolution of research
德恩结手术——追踪研究的演变
- DOI:
10.1090/suga/473 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Erica Flapan;Kenji Kozai;Ryo Nikkuni;Kimihiko Motegi - 通讯作者:
Kimihiko Motegi
Reduced Wu and generalized Simon invariants for spatial graphs
空间图的简化 Wu 和广义 Simon 不变量
- DOI:
10.1017/s0305004114000073 - 发表时间:
2014 - 期刊:
- 影响因子:0.8
- 作者:
Erica Flapan;Will Fletcher and Ryo Nikkuni - 通讯作者:
Will Fletcher and Ryo Nikkuni
Heawoodグラフの結び目内在グラフとしての性質について
关于 Heawood 图作为结内在图的属性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Erica Flapan;Will Fletcher and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Atsuhiko Mizusawa and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Ryo Nikkuni;新國 亮;新國 亮;新國 亮;新國 亮;新國 亮;新國 亮 - 通讯作者:
新國 亮
Conway-Gordon Type Theorems and its Applications I, II, III
康威-戈登型定理及其应用 I、II、III
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Erica Flapan;Will Fletcher and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Atsuhiko Mizusawa and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Ryo Nikkuni - 通讯作者:
Ryo Nikkuni
Recent developments in spatial graph theory
空间图论的最新进展
- DOI:
10.1090/conm/689/13845 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Erica Flapan;Thomas Mattman;Blake Mellor;Ramin Naimi;Ryo Nikkuni - 通讯作者:
Ryo Nikkuni
Erica Flapan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erica Flapan', 18)}}的其他基金
Spatial Graphs and Their Application to Complex Molecular Structures
空间图及其在复杂分子结构中的应用
- 批准号:
1607744 - 财政年份:2016
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
Topological symmetries and intrinsic properties of graphs embedded in 3-space
嵌入 3 空间的图的拓扑对称性和内在属性
- 批准号:
0905087 - 财政年份:2009
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
相似海外基金
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
- 批准号:
2887435 - 财政年份:2023
- 资助金额:
$ 23.89万 - 项目类别:
Studentship
Developing Virtual Reality-Mediated Representational Tools for Supporting and Enhancing Deep Mathematical Understanding of Linear Algebra Relationships
开发虚拟现实介导的表示工具来支持和增强对线性代数关系的深入数学理解
- 批准号:
2315756 - 财政年份:2023
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325078 - 财政年份:2023
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325076 - 财政年份:2023
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
- 批准号:
2325077 - 财政年份:2023
- 资助金额:
$ 23.89万 - 项目类别:
Standard Grant
Developing mathematical models for understanding the fundamental mechanics of the healthy brain under high-rate loading
开发数学模型以了解高速率负载下健康大脑的基本机制
- 批准号:
RGPIN-2018-05656 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Discovery Grants Program - Individual
Understanding human motor control and learning - a mathematical perspective
了解人类运动控制和学习——数学视角
- 批准号:
2750973 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Studentship
Enhancing Understanding of Long COVID Using Novel Mathematical Clustering Techniques
使用新颖的数学聚类技术增强对长期新冠肺炎的理解
- 批准号:
2738361 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Studentship
The asymmetry of mathematical determinacy: understanding why arithmetic is determinate and set theory indeterminate.
数学确定性的不对称性:理解为什么算术是确定的而集合论是不确定的。
- 批准号:
2586962 - 财政年份:2021
- 资助金额:
$ 23.89万 - 项目类别:
Studentship
DMS/NIGMS 1: An Experimental Mathematical Framework for understanding and Controlling Regulatory Delay in Self- Nonself Determination in the Immune System
DMS/NIGMS 1:理解和控制免疫系统自我非自我决定调节延迟的实验数学框架
- 批准号:
10684080 - 财政年份:2021
- 资助金额:
$ 23.89万 - 项目类别: