Topological symmetries and intrinsic properties of graphs embedded in 3-space
嵌入 3 空间的图的拓扑对称性和内在属性
基本信息
- 批准号:0905087
- 负责人:
- 金额:$ 18.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project has two goals, both concerning graphs embedded in 3-space. The topological symmetry group of a graph embedded in 3-space is defined as the group of automorphisms of the graph which are induced by homeomorphisms of 3-space. Our first goal is to characterize which groups can occur as the topological symmetry group of a particular embedded graph or family of graphs. The second goal of our project concerns intrinsic properties of a graph -- properties of an embedded graph which do not depend on the particular embedding. For example, a graph which has the property that every embedding of it in 3-space contains a nontrivial link is said to be intrinsically linked, while one which has the property that every embedding of it contains a nontrivial knot is said to be intrinsically knotted. We have previously shown that for any natural number n there is a graph such that every embedding of it contains a link with n components such that every pair of components has linking number at least n, and every component is a knot with minimal crossing number at least n. However, there cannot exist a graph which has the property that every embedding of it contains at least one composite knot. We would now like to study for which measures of complexity of knots and links there are graphs which are arbitrarily intrinsically complex by that measure.A molecule can be represented as a graph in 3-dimensional space. Most molecules are rigid, and the geometry of their graphs determines many of their properties. However, some molecules can rotate around particular bonds, and others are large enough to be somewhat flexible. For these non-rigid molecules, their topology is important in predicting their behavior. The study of the topology of graphs embedded in 3-dimensional space is used in determining the symmetries of non-rigid molecules. In particular, while the group of rigid symmetries of a molecule (known as the point group) is useful for analyzing the symmetries of rigid molecules, a molecular structure which is not rigid may have symmetries which are not included in the point group. The topological symmetry group was created in order to classify the symmetries of non-rigid molecules. The main goal of our project is to characterize all topological symmetry groups. Understanding molecular symmetries has many important application in chemistry. Symmetry is used in interpreting results in crystallography, spectroscopy, and quantum chemistry, as well as in analyzing the electron structure of a molecule. Symmetry is also used in pharmacology and in designing new molecules and new types of reactions.
这个奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。这个项目有两个目标,都是关于嵌入3-空间的图形。嵌入三维空间的图的拓扑对称群被定义为由三维空间的同胚导出的图的自同构群。我们的第一个目标是刻画哪些群可以作为特定嵌入图或图族的拓扑对称群出现。我们项目的第二个目标涉及图的内在属性--嵌入的图的属性不依赖于特定的嵌入。例如,一个图的每个嵌入在3-空间中都包含一个非平凡链接的性质称为内在链接,而一个图的每个嵌入包含一个非平凡纽结的性质称为内在纽结。我们已经证明了对于任意自然数n,都存在一个图,使得它的每一个嵌入都包含一个有n个分支的链环,使得每一对分支至少有n个链接数,并且每个分支都是一个至少有n个最小交叉数的纽结.然而,不可能存在一个图的性质是它的每个嵌入至少包含一个复合纽结.我们现在要研究的是,对于结和环的复杂性的哪些度量,存在通过该度量而具有任意本质复杂性的图。分子可以被表示为三维空间中的图。大多数分子都是刚性的,它们的图形的几何形状决定了它们的许多性质。然而,一些分子可以围绕特定的键旋转,而另一些分子足够大,因此具有一定的灵活性。对于这些非刚性分子,它们的拓扑结构对于预测它们的行为很重要。研究嵌入在三维空间中的图的拓扑学用于确定非刚性分子的对称性。特别是,虽然分子的刚性对称性群(称为点群)对于分析刚性分子的对称性是有用的,但非刚性的分子结构可能具有不包括在点群中的对称性。为了对非刚性分子的对称性进行分类,建立了拓扑对称群。我们项目的主要目标是刻画所有的拓扑对称群。了解分子对称性在化学中有许多重要的应用。对称性用于解释结晶学、光谱学和量子化学的结果,以及分析分子的电子结构。对称性也被用于药理学和设计新的分子和新类型的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erica Flapan其他文献
Dehn surgery on knots-- tracing the evolution of research
德恩结手术——追踪研究的演变
- DOI:
10.1090/suga/473 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Erica Flapan;Kenji Kozai;Ryo Nikkuni;Kimihiko Motegi - 通讯作者:
Kimihiko Motegi
Reduced Wu and generalized Simon invariants for spatial graphs
空间图的简化 Wu 和广义 Simon 不变量
- DOI:
10.1017/s0305004114000073 - 发表时间:
2014 - 期刊:
- 影响因子:0.8
- 作者:
Erica Flapan;Will Fletcher and Ryo Nikkuni - 通讯作者:
Will Fletcher and Ryo Nikkuni
Heawoodグラフの結び目内在グラフとしての性質について
关于 Heawood 图作为结内在图的属性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Erica Flapan;Will Fletcher and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Atsuhiko Mizusawa and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Ryo Nikkuni;新國 亮;新國 亮;新國 亮;新國 亮;新國 亮;新國 亮 - 通讯作者:
新國 亮
Conway-Gordon Type Theorems and its Applications I, II, III
康威-戈登型定理及其应用 I、II、III
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Erica Flapan;Will Fletcher and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Atsuhiko Mizusawa and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Hiroka Hashimoto and Ryo Nikkuni;Ryo Nikkuni - 通讯作者:
Ryo Nikkuni
Recent developments in spatial graph theory
空间图论的最新进展
- DOI:
10.1090/conm/689/13845 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Erica Flapan;Thomas Mattman;Blake Mellor;Ramin Naimi;Ryo Nikkuni - 通讯作者:
Ryo Nikkuni
Erica Flapan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erica Flapan', 18)}}的其他基金
Spatial Graphs and Their Application to Complex Molecular Structures
空间图及其在复杂分子结构中的应用
- 批准号:
1607744 - 财政年份:2016
- 资助金额:
$ 18.22万 - 项目类别:
Standard Grant
Enhancing the Mathematical Understanding of Students in Chemistry
增强化学学生的数学理解
- 批准号:
9981144 - 财政年份:2000
- 资助金额:
$ 18.22万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research in Symmetries at the University of Kentucky
REU 网站:肯塔基大学对称性研究
- 批准号:
2349261 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
- 批准号:
DP240101772 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Discovery Projects
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Fellowship
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Continuing Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Fellowship
Characterization of Systematic Effects in Ultracold Neutron Tests of Fundamental Symmetries
基本对称性超冷中子测试中系统效应的表征
- 批准号:
2310015 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Continuing Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Standard Grant
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
- 批准号:
2232117 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Continuing Grant
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Continuing Grant