Compiler and Runtime Support for Data Intensive Computing on Multi-dimensional Data
多维数据数据密集型计算的编译器和运行时支持
基本信息
- 批准号:9982087
- 负责人:
- 金额:$ 42.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-03-01 至 2004-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the largest and fastest-growing problems in scientific computing is the analysis and processing of very large data sets. These scientific data sets can come from long-running simulations (e.g. simulations of water pollution that create "snapshots" of the expected water conditions at later times), archives of remote sensing data (e.g. high-resolution satellite imagery), and archives of medical images (e.g. MRI scans for a patient or group of patients). These data sets are usually multi-dimensional, including spatial coordinates, time stamps, and several physical properties at each point. Several systems now support storage, retrieval, and visualization of such data sets, but few can efficiently process the data. This project will develop methods to produce efficient programs to carry out multi-dimensional data processing and analysis using a high-level parallel language.The project will attack this problem by developing runtime routines for optimizing resource usage, appropriate language extensions, and aggressive compiler optimizations for large data processing. The runtime methods will implement policies that optimize computational efficiency on a broad range of large data set analyses, taking into account the spatial structure and partitioning of the data and the computation to be performed. Incorporating these routines into the investigator's Active Data Repository will substantially generalize and improve that system. The language extensions and compiler optimizations will then make use of the runtime system to enable applications that analyze multi-dimensional data sets to be expressed at an abstract level, yet achieve high utilization of computational, storage, and communication resources.
科学计算中最大和增长最快的问题之一是分析和处理非常大的数据集。这些科学数据集可以来自长期运行的模拟(例如,水污染模拟,创建稍后预期水状况的“快照”),遥感数据档案(例如,高分辨率卫星图像)和医学图像档案(例如,对一名患者或一组患者的MRI扫描)。这些数据集通常是多维的,包括空间坐标,时间戳和每个点的几个物理属性。现在有几个系统支持这些数据集的存储、检索和可视化,但很少有系统能有效地处理这些数据。本项目将开发使用高级并行语言进行多维数据处理和分析的高效程序的方法。本项目将通过开发用于优化资源使用的运行时例程、适当的语言扩展以及针对大型数据处理的积极编译器优化来解决这一问题。运行时方法将实现优化大范围大型数据集分析的计算效率的策略,同时考虑数据的空间结构和分区以及要执行的计算。将这些例行程序纳入调查员的活动数据储存库将大大推广和改进该系统。然后,语言扩展和编译器优化将利用运行时系统,使分析多维数据集的应用程序能够在抽象级别上表达,同时实现计算,存储和通信资源的高利用率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Sussman其他文献
Principles for designing data-/compute-intensive distributed applications and middleware systems for heterogeneous environments
- DOI:
10.1016/j.jpdc.2007.04.006 - 发表时间:
2007-07-01 - 期刊:
- 影响因子:
- 作者:
Jik-Soo Kim;Henrique Andrade;Alan Sussman - 通讯作者:
Alan Sussman
Data redistribution and remote method invocation for coupled components
- DOI:
10.1016/j.jpdc.2005.12.009 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:
- 作者:
Felipe Bertrand;Randall Bramley;David E. Bernholdt;James A. Kohl;Alan Sussman;Jay W. Larson;Kostadin B. Damevski - 通讯作者:
Kostadin B. Damevski
Multiple query scheduling for distributed semantic caches
- DOI:
10.1016/j.jpdc.2010.02.002 - 发表时间:
2010-05-01 - 期刊:
- 影响因子:
- 作者:
Beomseok Nam;Minho Shin;Henrique Andrade;Alan Sussman - 通讯作者:
Alan Sussman
Portable, Extensible Toolkit for Scientific Computation
- DOI:
- 发表时间:
2012-03 - 期刊:
- 影响因子:0
- 作者:
Alan Sussman - 通讯作者:
Alan Sussman
Spatial indexing of distributed multidimensional datasets
分布式多维数据集的空间索引
- DOI:
10.1109/ccgrid.2005.1558637 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Beomseok Nam;Alan Sussman - 通讯作者:
Alan Sussman
Alan Sussman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Sussman', 18)}}的其他基金
Collaborative Research:CyberTraining:Implementation:Medium: Modern Course Exemplars infused with Parallel and Distributed Computing for the Introductory Computing Course Sequence
协作研究:网络培训:实施:中:为入门计算课程序列注入并行和分布式计算的现代课程范例
- 批准号:
2321019 - 财政年份:2023
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
IPA Agreement with University of Maryland 4th Year (Sussman)
与马里兰大学第四年 IPA 协议 (Sussman)
- 批准号:
1921376 - 财政年份:2019
- 资助金额:
$ 42.63万 - 项目类别:
Intergovernmental Personnel Award
EAGER: Collaborative Research: Developing a Parallel and Distributed Computing Concepts Curriculum Enhancement for the Computer Science Principles Course
EAGER:协作研究:为计算机科学原理课程开发并行和分布式计算概念课程增强
- 批准号:
1550928 - 财政年份:2015
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
Collaborative Research: CI-ADDO-NEW: Parallel and Distributed Computing Curriculum Development and Educational Resources
合作研究:CI-ADDO-NEW:并行和分布式计算课程开发和教育资源
- 批准号:
1205592 - 财政年份:2012
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
CSR--AES: Creating a Robust Desktop Grid using Peer-to-Peer Services
CSR--AES:使用点对点服务创建强大的桌面网格
- 批准号:
0615072 - 财政年份:2006
- 资助金额:
$ 42.63万 - 项目类别:
Continuing Grant
DDDAS-TMRP: Data-Driven Power System Operations
DDDAS-TMRP:数据驱动的电力系统运营
- 批准号:
0540216 - 财政年份:2006
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
CSR--AES: Employing Peer-to-Peer Services for Robust Grid Computing
CSR--AES:采用点对点服务实现稳健的网格计算
- 批准号:
0509266 - 财政年份:2005
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
Collaborative Research: ITR/AP&IM A Data Intense Challenge: The Instrumented Oil Field of the Future
合作研究:ITR/AP
- 批准号:
0121161 - 财政年份:2001
- 资助金额:
$ 42.63万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Compiler and Runtime Support for Sampled Sparse Computations on Heterogeneous Systems
职业:异构系统上采样稀疏计算的编译器和运行时支持
- 批准号:
2338144 - 财政年份:2024
- 资助金额:
$ 42.63万 - 项目类别:
Continuing Grant
Collaborative Research: FMitF: Track II: Cross-Language Support for Runtime Verification
合作研究:FMitF:轨道 II:运行时验证的跨语言支持
- 批准号:
2319473 - 财政年份:2023
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track II: Cross-Language Support for Runtime Verification
合作研究:FMitF:轨道 II:运行时验证的跨语言支持
- 批准号:
2319472 - 财政年份:2023
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
SHF: Small: Expediting the Execution of Machine Learning Applications on Multi-GPU Infrastructure with Architecture Awareness and Runtime Support
SHF:小型:通过架构意识和运行时支持加快多 GPU 基础设施上机器学习应用程序的执行
- 批准号:
2154973 - 财政年份:2022
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
Elements: Agricultural Cyber-infrastructure support for Field and Grid Modeling, and Runtime Decision-Making
要素:农业网络基础设施支持现场和网格建模以及运行时决策
- 批准号:
2004766 - 财政年份:2020
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
CDS&E: Compiler/Runtime Support for Developing Scalable Parallel Multi-Scale Multi-Physics
CDS
- 批准号:
1940789 - 财政年份:2019
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
CNS Core: Small: Language Runtime Support for Energy-Aware Applications
CNS 核心:小型:对能源感知应用程序的语言运行时支持
- 批准号:
1910532 - 财政年份:2019
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant
CAREER: Compiler and Runtime Support for Multi-Tasking on Commodity GPUs
职业:商用 GPU 上多任务的编译器和运行时支持
- 批准号:
1750760 - 财政年份:2018
- 资助金额:
$ 42.63万 - 项目类别:
Continuing Grant
CAREER: Compiler and Runtime Support for Irregular Applications on Many-core Processors
职业:多核处理器上不规则应用程序的编译器和运行时支持
- 批准号:
1741683 - 财政年份:2017
- 资助金额:
$ 42.63万 - 项目类别:
Continuing Grant
XPS: FULL: Integrating Programming Model, Runtime, Algorithmic, and Architectural Support To Use Inexact and Heterogeneous Hardware for Scientific Computations
XPS:完整:集成编程模型、运行时、算法和架构支持,以使用不精确和异构硬件进行科学计算
- 批准号:
1629392 - 财政年份:2016
- 资助金额:
$ 42.63万 - 项目类别:
Standard Grant