CAREER: Compiler and Runtime Support for Multi-Tasking on Commodity GPUs

职业:商用 GPU 上多任务的编译器和运行时支持

基本信息

  • 批准号:
    1750760
  • 负责人:
  • 金额:
    $ 50.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

General-purpose Graphics Processing Units (GPU) computing has become mainstream, as witnessed in various domains such as machine learning, graph analytics, and scientific simulation. One notable trend is employing GPUs in data centers and cloud computing infrastructures to satisfy users' increasing demand to accelerate their applications. In such multi-tasking environments, applications from different users contend to use the shared GPU, leading to unpredictable and unacceptable performance degradation. This CAREER project aims at developing a set of compiler and runtime techniques to support multi-tasking on commodity GPUs in a transparent and efficient manner. The compiler techniques circumvent the hardware limitations to enable a set of features, such as preemption, and the runtime system schedules applications to utilize the potential of the GPU and guarantees quality of service. In addition, the investigator advances GPU education in the University to target both Computer Science (CS) and non-CS students based on a GPU education center.Specifically, the project investigates how to integrate compiler and runtime techniques to support multi-tasking on GPUs by building a system that achieves three goals. First, the system addresses GPU core contention by enabling flexible GPU kernel preemption. The compiler transforms the GPU program to be a preemptable form by circumventing the limitation imposed by the hardware thread scheduler. The runtime intercepts all GPU kernel launch requests and makes global preemption and scheduling decisions to maximize performance. Second, the system supports fine-grained sharing for threads from different applications to fully utilize hardware resources within GPU streaming multi-processors. The runtime guarantees the QoS of user-facing applications while optimizing overall throughput aided by performance prediction. Third, the system addresses GPU memory contention by coordinating GPU memory transfers, which considers memory access patterns and array reuse patterns.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通用图形处理单元(GPU)计算已经成为主流,在机器学习、图形分析和科学模拟等各个领域都是如此。一个值得注意的趋势是在数据中心和云计算基础设施中使用gpu,以满足用户不断增长的加速应用程序的需求。在这种多任务环境中,来自不同用户的应用程序争用共享GPU,导致不可预测和不可接受的性能下降。这个CAREER项目旨在开发一套编译器和运行时技术,以透明和高效的方式支持商用gpu上的多任务处理。编译器技术绕过硬件限制来启用一组特性,例如抢占,运行时系统调度应用程序来利用GPU的潜力并保证服务质量。此外,研究者还推动了该大学的GPU教育,以GPU教育中心为基础,针对计算机科学(CS)和非CS学生。具体来说,该项目研究了如何通过构建一个实现三个目标的系统来集成编译器和运行时技术来支持gpu上的多任务处理。首先,该系统通过启用灵活的GPU内核抢占来解决GPU核心争用问题。编译器通过规避硬件线程调度器施加的限制,将GPU程序转换为可抢占的形式。运行时拦截所有GPU内核启动请求,并做出全局抢占和调度决策,以最大化性能。其次,系统支持来自不同应用程序的线程的细粒度共享,以充分利用GPU流多处理器内的硬件资源。运行时保证面向用户的应用程序的QoS,同时借助性能预测优化总体吞吐量。第三,系统通过协调GPU内存传输来解决GPU内存争用问题,其中考虑了内存访问模式和数组重用模式。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DGSM: A GPU-Based Subgraph Isomorphism framework with DFS exploration
ELIχR: Eliminating Computation Redundancy in CNN-Based Video Processing
ELIÏR:消除基于 CNN 的视频处理中的计算冗余
FLARE: Flexibly Sharing Commodity GPUs to Enforce QoS and Improve Utilization
  • DOI:
    10.1007/978-3-030-72789-5_3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Han;Daniel Mawhirter;Bo Wu;Lin Ma;Chen Tian
  • 通讯作者:
    Wei Han;Daniel Mawhirter;Bo Wu;Lin Ma;Chen Tian
AutoMine: harmonizing high-level abstraction and high performance for graph mining
GRNN: Low-Latency and Scalable RNN Inference on GPUs
  • DOI:
    10.1145/3302424.3303949
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Connor Holmes;Daniel Mawhirter;Yuxiong He;Feng Yan;Bo Wu
  • 通讯作者:
    Connor Holmes;Daniel Mawhirter;Yuxiong He;Feng Yan;Bo Wu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Wu其他文献

SPread: Exploiting fractal social community For efficient multi-coPy routing in VDTNs
SPread:利用分形社交社区在 VDTN 中实现高效的多副本路由
Evaluation of effective elastic constants for polycrystalline PZT thin films by XRD patterns and pole figures
通过 XRD 图案和极图评估多晶 PZT 薄膜的有效弹性常数
  • DOI:
    10.1007/s11771-007-0229-3
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuejun Zheng;Liping Tang;Qin;Bo Wu
  • 通讯作者:
    Bo Wu
Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application
可拉伸热电发生器,通过红外反射增强输出,适用于可穿戴应用
  • DOI:
    10.1016/j.cej.2022.139749
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Bo Wu;Wei Wei;Yang Guo;Weng Hou Yip;Beng Kang Tay;Chengyi Hou;Qinghong Zhang;Yaogang Li;Hongzhi Wang
  • 通讯作者:
    Hongzhi Wang
An Investigation of Half-Metallic Ferromagnets Behavior in Hg2CuTi-Type Heusler Alloy Ti2FeAl by Using GGA
利用 GGA 研究 Hg2CuTi 型 Heusler 合金 Ti2FeAl 中的半金属铁磁体行为
  • DOI:
    10.4028/www.scientific.net/amr.535-537.1291
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiude Yang;Bo Wu;Song Zhang
  • 通讯作者:
    Song Zhang
Amyloid b proteins inhibit Cl 2 -ATPase activity in cultured rat hippocampal neurons
淀粉样蛋白 b 抑制培养的大鼠海马神经元中的 Cl 2 -ATP 酶活性
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Yagyu;K. Kitagawa;T. Irie;Bo Wu;Xun;N. Hattori;C. Inagaki
  • 通讯作者:
    C. Inagaki

Bo Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Wu', 18)}}的其他基金

SPX: Collaborative Research: Pinpointing and Resolving Scalability Culprits Hidden in Different Components of the Whole System Stack
SPX:协作研究:查明并解决隐藏在整个系统堆栈不同组件中的可扩展性问题
  • 批准号:
    1823005
  • 财政年份:
    2018
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Exploring Portable Data Placement on Massively Parallel Platforms with Heterogeneous Memory Architectures
CSR:小型:协作研究:探索具有异构内存架构的大规模并行平台上的便携式数据放置
  • 批准号:
    1618912
  • 财政年份:
    2016
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
CRII: SHF: A Compiler and Runtime Infrastructure for Flexible Scheduling and Scheduling-Enabled Optimizations on GPUs
CRII:SHF:用于 GPU 上灵活调度和启用调度优化的编译器和运行时基础架构
  • 批准号:
    1464216
  • 财政年份:
    2015
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Compiler and Runtime Support for Sampled Sparse Computations on Heterogeneous Systems
职业:异构系统上采样稀疏计算的编译器和运行时支持
  • 批准号:
    2338144
  • 财政年份:
    2024
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Continuing Grant
CAREER: An Automated Compiler-Runtime Framework for Democratizing Secure Collaborative Computation
职业:用于民主化安全协作计算的自动编译器运行时框架
  • 批准号:
    2238671
  • 财政年份:
    2023
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Continuing Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
  • 批准号:
    1919021
  • 财政年份:
    2019
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
CDS&E: Compiler/Runtime Support for Developing Scalable Parallel Multi-Scale Multi-Physics
CDS
  • 批准号:
    1940789
  • 财政年份:
    2019
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
  • 批准号:
    1946752
  • 财政年份:
    2019
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
  • 批准号:
    1919211
  • 财政年份:
    2019
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
  • 批准号:
    1919122
  • 财政年份:
    2019
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Standard Grant
CSR: Medium: Effective Control to Maximize Resource Efficiency in Large Clusters; Hardware, Runtime, and Compiler Perspectives
CSR:中:有效控制以最大化大型集群中的资源效率;
  • 批准号:
    1763658
  • 财政年份:
    2018
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Continuing Grant
CAREER: Compiler and Runtime Support for Irregular Applications on Many-core Processors
职业:多核处理器上不规则应用程序的编译器和运行时支持
  • 批准号:
    1741683
  • 财政年份:
    2017
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Continuing Grant
Compiler and Runtime optimisations for Graph Databases
图数据库的编译器和运行时优化
  • 批准号:
    2560814
  • 财政年份:
    2017
  • 资助金额:
    $ 50.15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了