Multiresolution Visualization Tools for Interactive Analysis of Large-Scale N-Dimensional Datasets
用于大规模 N 维数据集交互式分析的多分辨率可视化工具
基本信息
- 批准号:9982273
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-10-15 至 2003-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in computing technology are making simulation as important to science today as theory and experiment have been in the past. Unfortunately this success is overwhelming the scientific community by drowning scientists in the data produced. Because of storage, network, and graphics bottlenecks, more data is produced than can be analyzed or visualized. Valuable information is being lost or neglected because of these deficiencies. Additionally, scientists are painfully aware of this technological bottleneck, and it affects how they conduct their science. It slows the rate of data acquisition, and calculations that could generate higher-dimensional data, e.g. vector and tensor, are not being performed. The goal of this project is to address the visualization bottleneck by developing multiresolution software tools that will facilitate understanding of large-scale experimental and simulation datasets. The project will then apply these new techniques to data from physics and biology, thus providing advances in fluid dynamics and neuroscience. We will do this by close interactions with the discipline scientists, including using their feedback to improve initial designs of our tools.The technical approach of the project is based on the fact that the graphics workstations available to most scientists are incapable of visualizing giga- and tera-scale datasets. It is also clear that for the foreseeable future our ability to generate data will outpace our ability to render and visualize it. Therefore we must develop methods for representing, segmenting and compressing these enormous datasets into a form that can be processed on today's graphics computers. Multiresolution representations and algorithms are at the core of the methods and tools to be developed. A multiresolution approach allows visualization techniques to scale to enormous datasets by focusing resources in those regions of the dataset most important to the user. For example, multiresolution modeling and display techniques will allow a user to view a single dataset at a coarse level-of--detail, and easily provide pertinent details only in those regions of greatest interest. During analysis, multiresolution methods can allocate more computational resources in segments of the data with the greatest rates of change or containing specific properties. This project will produce a set of multiresolution software tools for processing and visualizing large-scale N-dimensional (scalar, vector and tensor) volumetric datasets (NDVDs), as well as large-scale triangle meshes. Specifically, tools for segmenting and interpolating NDVDs using level-set methods, extracting semi-regular meshes directly from volume datasets, compressing triangle meshes, and volume rendering NDVDs will be developed. As tools become available they will be deployed to scientists at Caltech's Center for Simulation of Dynamic Response of Materials (sponsored by DOE), and to scientists at the National Center for Microscopy and Imaging Research (UC San Diego).
计算技术的进步使模拟对当今的科学至关重要,就像过去的理论和实验一样。不幸的是,这一成功是通过淹没科学家的数据来压倒科学界的巨大。由于存储,网络和图形瓶颈,生成的数据比可以分析或可视化的数据更多。由于这些缺陷,丢失或忽略了有价值的信息。此外,科学家们痛苦地意识到了这种技术瓶颈,它影响了他们的科学方式。它减慢了数据获取率,并且可以生成更高维数据的计算,例如矢量和张量未进行。该项目的目的是通过开发多分辨率软件工具来解决可视化瓶颈,从而有助于了解大型实验和仿真数据集。然后,该项目将将这些新技术应用于物理和生物学的数据,从而提供流体动力学和神经科学的进步。我们将通过与学科科学家进行密切互动,包括使用他们的反馈来改善我们工具的初始设计。同样很明显,在可预见的将来,我们生成数据的能力将超过我们渲染和可视化数据的能力。因此,我们必须开发将这些巨大数据集表示,分割和压缩这些巨大数据集中的方法,以可以在当今的图形计算机上处理。多分辨率表示和算法是要开发的方法和工具的核心。一种多分辨率方法允许可视化技术通过将资源集中在对用户最重要的数据集区域中的资源来扩展到巨大的数据集。例如,多分辨率建模和显示技术将使用户可以在粗糙的级别上查看一个数据集,并且仅在最引起最大兴趣的地区轻松提供相关细节。在分析过程中,多分辨率方法可以在数据段中分配更多的计算资源,其变化率最高或包含特定属性。该项目将生产一组多分辨率软件工具,用于处理和可视化大规模的N维(标量,矢量和张量)体积数据集(NDVDS)以及大型三角网格。具体而言,将开发用于使用级别集合方法进行分割和插值NDVD的工具,直接从音量数据集中提取半规则网格,将开发压缩三角网格以及音量渲染NDVD。随着工具的可用,它们将被部署给加州理工学院中心的科学家,以模拟材料的动态响应(DOE赞助),以及国家显微镜和成像研究中心(UC San Diego)的科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Breen其他文献
The Evolving Role of the Clinical Nurse Specialist in Interventional Oncology
临床护理专家在介入肿瘤学中不断变化的角色
- DOI:
10.1007/s00270-023-03490-2 - 发表时间:
2023 - 期刊:
- 影响因子:2.9
- 作者:
V. Halai;D. Maclean;Victoria Smith;Samantha Beverley;B. Maher;B. Stedman;T. Bryant;David Breen;S. Modi - 通讯作者:
S. Modi
The clinical assessment of hip muscle strength in professional rugby union players
- DOI:
10.1016/j.ptsp.2021.08.013 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
David Breen;Garreth Farrell;Eamonn Delahunt - 通讯作者:
Eamonn Delahunt
Mo1383: SEQUENTIAL TESTING FOR HIGH-RISK NASH BY CT1 FROM LIVER<em>MULTISCAN</em> IMPROVES DIAGNOSTIC YIELD COMPARED TO THE USE OF MRE ALONE
- DOI:
10.1016/s0016-5085(22)63655-2 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Naim Alkhouri;Elizabeth Shumbayawonda;Cayden Beyer;Carlos Duncker;Atsushi Nakajima;David Breen;Daniel J. Cuthbertson;Stephen A. Harrison;Mazen Noureddin - 通讯作者:
Mazen Noureddin
Oligoamides of 2-amino-5-alkylthiazole 4-carboxylic acids: anti-trypanosomal compounds
2-氨基-5-烷基噻唑4-羧酸的寡酰胺:抗锥虫化合物
- DOI:
10.1007/s00044-013-0723-0 - 发表时间:
2014 - 期刊:
- 影响因子:2.6
- 作者:
Stuart Lang;A. Khalaf;David Breen;Judith K. Huggan;C. Clements;S. Mackay;C. Suckling - 通讯作者:
C. Suckling
David Breen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Breen', 18)}}的其他基金
A Design Framework for Programmable Manufacturing of Customized Knitted Materials
定制针织材料可编程制造的设计框架
- 批准号:
1537720 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: Morphogenetic Primitives: Self-Organizing Geometry Based on Morphogenesis and Evolutionary Computing
职业:形态发生原语:基于形态发生和进化计算的自组织几何
- 批准号:
0845415 - 财政年份:2009
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Interactive, Freeform Editing of Large-Scale, Multiresolution Level Set Models
大规模、多分辨率水平集模型的交互式、自由形式编辑
- 批准号:
0702441 - 财政年份:2007
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SGER: Automated Shape Composition Via Genetic Programming
SGER:通过遗传编程自动组合形状
- 批准号:
0636323 - 财政年份:2006
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Interactive Level-Set Modeling for Visualization of Biological Volume Datasets
协作研究:生物体数据集可视化的交互式水平集建模
- 批准号:
0421347 - 财政年份:2003
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: Interactive Level-Set Modeling for Visualization of Biological Volume Datasets
协作研究:生物体数据集可视化的交互式水平集建模
- 批准号:
0083287 - 财政年份:2000
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
相似国自然基金
基于荧光共振能量转移机理构建多肽荧光探针用于可视化Zn2+结合SQSTM1/p62调节自噬在前列腺癌去势耐受中的作用机制
- 批准号:82303568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
调控线粒体钙失稳纳米信使联合自噬抑制用于乳腺癌的信号级联可视化治疗研究
- 批准号:82302210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MR可视化仿生纳米酶在缺血性脑卒中微循环改善中的应用基础研究
- 批准号:82302176
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
同步辐射技术驱动的晶态孔界面气体吸附动态可视化
- 批准号:22320102003
- 批准年份:2023
- 资助金额:216 万元
- 项目类别:国际(地区)合作与交流项目
小鼠病理性心室重构的磷酸二酯酶PDE10A靶向性PET可视化研究
- 批准号:82300567
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Calcium Transients in Fertilization and Early Embryogenesis in C. elegans
钙瞬变在秀丽隐杆线虫受精和早期胚胎发生中的作用
- 批准号:
10654250 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Knowledgebase of Escherichia coli Genome and Metabolism
大肠杆菌基因组和代谢知识库
- 批准号:
10716050 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
- 批准号:
10725550 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别: