CAREER: Value Function Approximation for Control of Complex Systems

职业:复杂系统控制的价值函数逼近

基本信息

  • 批准号:
    9985229
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-04-01 至 2005-09-30
  • 项目状态:
    已结题

项目摘要

9985229Van RoyThis proposed research is devoted to the development of streamlined and reliable computational methods for value function approximation. A successful outcome would be approximation algorithms that are widely-accessible and effective in the control of complex systems.Proposed approximation methods build on work in the area of neuro-dynamic programming which is sometimes called "Approximate Dynamic Programming" or "Reinforcement Learning." Algorithms that will be developed are based on approximate value iteration, temporal-difference, learning, and linear programming. A method for "feature selection" involving the use of value functions associated with simplified problems will also be explored.To promote a pragmatic view of methods under development, and to provide a testbed for evaluation of ideas, two applications have been chosen to play integral roles in the project: dynamic risk management and the control of multiclass queuing networks.The educational component of this project includes a new graduate level course on neurodynamic programming together with a realignment of current courses to incorporate a greater emphasis on computation, to foster an appreciation for the use of approximations when system become more complex, and to promote a unified view of stochastic control problems across many disciplines.***
9985229 Van Roy这项拟议的研究致力于开发简化和可靠的值函数逼近计算方法。一个成功的结果将是在复杂系统的控制中广泛可访问和有效的近似算法。所提出的近似方法建立在神经动态规划领域的工作基础上,该领域有时被称为“近似动态规划”或“强化学习”。将要开发的算法是基于近似值迭代、时差、学习和线性规划。还将探索一种涉及使用与简化问题相关的值函数的“特征选择”方法。为了促进对正在开发的方法的实用看法,并为想法的评估提供一个试验台,已选择了两个应用程序在该项目中扮演整体角色:动态风险管理和多类排队网络的控制。该项目的教育部分包括一门新的研究生水平的神经动力学编程课程,以及对现有课程的重新调整,以纳入对计算的更多重视,培养对系统变得更加复杂时使用近似的欣赏,并促进跨多个学科的随机控制问题的统一观点。*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Van Roy其他文献

An Approximate Dynami cP rogramming Approach to Decentralized Contro lo f Stochastic System s
随机系统分散控制的近似动态规划方法
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Cogill;M. Rotkowitz;Benjamin Van Roy;S. Lall
  • 通讯作者:
    S. Lall
A Message-Passing Paradigm for Resource Allocation
资源分配的消息传递范式
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Moallemi;Benjamin Van Roy
  • 通讯作者:
    Benjamin Van Roy
Convergence of the Min-Sum Algorithm for Convex Optimization
凸优化最小和算法的收敛性
Is Stochastic Gradient Descent Near Optimal?
随机梯度下降接近最优吗?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Zhu;Hong Jun Jeon;Benjamin Van Roy
  • 通讯作者:
    Benjamin Van Roy
Decentralized decision-making in a large team with local information
大型团队利用本地信息进行分散决策
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paat Rusmevichientong;Benjamin Van Roy
  • 通讯作者:
    Benjamin Van Roy

Benjamin Van Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Van Roy', 18)}}的其他基金

Directed Regression
有向回归
  • 批准号:
    0968707
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ITR: Axioms and Algorithms for Reputation
ITR:声誉公理和算法
  • 批准号:
    0428868
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
  • 批准号:
    71903144
  • 批准年份:
    2019
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Effect of Value Function Initialization on the Convergence Rate of Reinforcement Learning
价值函数初始化对强化学习收敛率的影响
  • 批准号:
    565683-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Zeros and discrete value distribution of the Riemann zeta function and its derivatives
黎曼 zeta 函数及其导数的零点和离散值分布
  • 批准号:
    18K13400
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on the Logic of Regional Developments of Organic Agriculture: Analysis by the Function and Value Change Framework
有机农业区域发展逻辑研究:功能与价值变化框架分析
  • 批准号:
    18K05871
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
General Value Function Discovery
一般价值函数发现
  • 批准号:
    527871-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of new method for measuring clo value using a human body with thermoregulatory function
开发利用具有体温调节功能的人体测量Clo值的新方法
  • 批准号:
    17K00807
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sensitivity analysis of the value function of parametric optimization problems
参数优化问题价值函数的敏感性分析
  • 批准号:
    509632-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Interconnecting landscape function, species distribution, and gene flow in novel ecosystems; understanding the value of small protected areas for Fisher (Martes pennanti) in human-impacted landscapes
将新型生态系统中的景观功能、物种分布和基因流相互联系;
  • 批准号:
    461854-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Industrial Postgraduate Scholarships
The adaptation of complex function theory to ultradiscrete function theory modeled on value distribution theories and its application to various fields
复变函数理论对以值分布理论为模型的超离散函数理论的适应及其在各个领域的应用
  • 批准号:
    16K05194
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extreme value statistics of characteristic polynomials of random matrices and the Riemann zeta-function
随机矩阵特征多项式和黎曼zeta函数的极值统计
  • 批准号:
    1792464
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Research related to value distribution of zeta function and infinitely divisible distribution
zeta函数值分布及无限可分分布相关研究
  • 批准号:
    16K05077
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了