A Coherent Tunable Smith-Purcell Radiator for the Far Infrared
远红外相干可调谐史密斯-珀塞尔辐射器
基本信息
- 批准号:0070491
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0070491WalshThe purpose of the project is to develop a device which is defined by the term "grating coupledoscillator" (GCO) [1,2]. The GCO is a tunable source of coherent radiation that, we anticipate, can provide power for spectroscopic investigations and function as a local oscillator over the entire THz-FIR range of the spectrum (0.3-30 THz). For nearly a century the FIR spectral regime has been relatively under-exploited, largely due to the lack of tunable, coherent sources. Despite this difficulty, the importance of a broad range of scientific questions extending from biophysics and condensed matter to plasma physics and radio astronomy have motivated research in the FIR spectral region. The unique characteristics of the GCO will add a powerful new tool to the arsenal of techniques used in these investigations.The GCO is a novel adaptation of an old idea. The essential components are a very "bright"electron beam and a diffraction grating. Smith and Purcell [3] first described experiments withelectron beams moving over a grating nearly fifty years ago.A single electron passing over a grating induces a surface current footprint which in turn produces a radiative wake. The response of the grating to the passage of the electron is coherent in the same sense that a dielectric material will respond coherently to the passage of a fast particle. A diffuse beam of electrons passing over a grating will generate a total signal that is an incoherent superposition of the contributions from each electron. In this limit, the radiated power scales only linearly with beam current and the total power produced is modest. When the beam current density exceeds a critical value, distributed feedback on the grating will cause individual electron contributions to also add coherently. The power available increases dramatically. In experiments to date, this "start-oscillation" threshold has been crossed at frequencies up to 1.5 THz.The GCO is superior to the other available FIR sources in several respects. First, the use of a freeelectron beam avoids the bulk material response which limits the spectral range of solid state devices. Second, contrary to conventional microwave tube engineering, the use of bright, low current electron beams with a suitably low loss open resonator (grating) structure surmounts all four impediments that limit the tuning range of conventional electron tubes to less than 1 THz. As early as fifty years ago [4-6], these impediments had been identified as: (1) limits set by the need for precision in fabrication, (2) thermal stability, (3) "circuit" losses, and (4) the rapid increase of the start current density with the operating frequency. Lastly, a complete GCO will be smaller than a briefcase, without cryogenics or intricate supporting hardware.Theoretical estimates of the GCO output power are 10's of mW (CW) with efficiency exceeding 0.01. The operating frequency range is limited only by the quality of the electron beam. Current GCO output power and efficiency below 1 THz are 100 nW and 10-7 respectively. The proposed course of research aims to lower the start current, thereby increasing the power and operating frequency, through improved electron beam quality and grating coupling efficiency. This goal requires extensive theoretical and experimental studies to achieve the anticipated 1000 increase in radiated and resolving powers.In current experiments, a modified scanning electron microscope (SEM) generates the drivingbeam. This SEM system will be improved to produce a much brighter electron beam. The signal collection optics and instrumentation will be developed in order to facilitate more precise monitoring of the experimental conditions. The grating resonator design will be investigated experimentally and theoretically to reduce losses, in order to lower the start oscillation threshold, and enhance the output coupling efficiency. The theory of GCO operation will be developed further to understand the dependence of output power on current. The final goal of the project is to operate the SEM with compact dc-dc converter based high voltage supplies and a single tip field emission cathode, thus providing proof of principle operation of a miniature GCO.***
0070491沃尔什该项目的目的是开发一种由术语“光栅耦合振荡器”(GCO)[1,2]定义的设备。GCO是一种可调谐的相干辐射源,我们预计,它可以为光谱研究提供动力,并在整个THz-FIR光谱范围(0.3-30 THz)内用作本地振荡器。近世纪以来,FIR光谱范围一直相对未得到充分利用,这主要是由于缺乏可调谐的相干光源。尽管存在这些困难,但从生物物理学和凝聚态物质到等离子体物理学和射电天文学的广泛科学问题的重要性激发了FIR光谱区域的研究。贺卡业务的独特性将为这些调查所使用的技术库增添一个强有力的新工具,贺卡业务是对一个旧想法的新的改编。其基本组成部分是一个非常“明亮“的电子束和衍射光栅。Smith和珀塞尔[3]在近50年前首次描述了电子束在光栅上运动的实验,单个电子通过光栅会引起表面电流足迹,从而产生辐射尾流。光栅对电子通过的响应是相干的,其意义与电介质材料对快速粒子通过的响应是相干的相同。一束漫反射的电子束通过一个光栅将产生一个总的信号,它是每个电子贡献的非相干叠加。在这个极限下,辐射功率仅与束流成线性比例,产生的总功率是适度的。当束流密度超过临界值时,光栅上的分布反馈将导致单个电子的贡献也相干地增加。可用的功率急剧增加。在迄今为止的实验中,这个“开始振荡”阈值已越过频率高达1.5 THz。GCO是上级其他可用的FIR源在几个方面。首先,自由电子束的使用避免了限制固态器件的光谱范围的体材料响应。第二,与传统的微波管工程相反,使用具有适当低损耗开放谐振器(光栅)结构的明亮的低电流电子束克服了将传统电子管的调谐范围限制为小于1 THz的所有四个障碍。早在50年前[4-6],这些障碍已被确定为:(1)制造精度要求的限制,(2)热稳定性,(3)“电路”损耗,以及(4)启动电流密度随工作频率的快速增加。最后,一个完整的GCO将比一个公文包小,没有低温或复杂的支持硬件。理论估计的GCO输出功率为10毫瓦(CW)与效率超过0.01。工作频率范围仅受电子束质量的限制。目前GCO在1 THz以下的输出功率和效率分别为100 nW和10-7。所提出的研究过程旨在通过改善电子束质量和光栅耦合效率来降低启动电流,从而增加功率和工作频率。这一目标需要广泛的理论和实验研究,以实现预期的1000增加辐射和解决powers.In目前的实验中,修改后的扫描电子显微镜(SEM)产生drivingbeam。该扫描电镜系统将得到改进,以产生更明亮的电子束。将开发信号收集光学器件和仪器,以便更精确地监测实验条件。本文将从实验和理论上研究光栅谐振腔的设计,以降低损耗,降低起振阈值,提高输出耦合效率。GCO工作的理论将进一步发展,以了解输出功率对电流的依赖性。该项目的最终目标是使用基于紧凑型DC-DC转换器的高压电源和单尖端场发射阴极操作SEM,从而提供微型GCO的原理操作证明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Brownell其他文献
James Brownell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
- 批准号:
EP/X034542/2 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Research Grant
CAREER: Engineering the nanoparticle interface for tunable biomolecular aggregation
职业:设计纳米颗粒界面以实现可调节的生物分子聚集
- 批准号:
2338117 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
CAREER: Hybrid Bronzes: Mixed-Valence Hybrid Metal Oxides as a Tunable Material Platform
职业:混合青铜:混合价混合金属氧化物作为可调材料平台
- 批准号:
2338086 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Design of Nanoporous BCN with Tunable Pores for CO2 Capture and Conversion
用于 CO2 捕获和转化的具有可调孔径的纳米多孔 BCN 的设计
- 批准号:
DP240102528 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Discovery Projects
CAREER: Tunable Connate Topological Superconductivity in 2D Transition Metal Dichalcogenides
职业:二维过渡金属二硫化物中的可调谐共生拓扑超导
- 批准号:
2338984 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
CAS: CAREER: Synthetic Designs Toward Wavelength-Tunable Production of Reactive Intermediates for Selective Photooxidation
CAS:职业:用于选择性光氧化的反应中间体的波长可调生产的合成设计
- 批准号:
2340404 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
Optically Tunable Functional Nano-Coatings on Fly Ash-Based Ceramics
粉煤灰基陶瓷上的光学可调功能纳米涂层
- 批准号:
IM240100052 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Mid-Career Industry Fellowships
CAREER: Designing and Probing Emergent Phases with Tunable Magnons in Graphene
职业:利用石墨烯中的可调磁振子设计和探测涌现相
- 批准号:
2339623 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
SBIR Phase I: A Tunable Deep Ultraviolet (UV)-based Polyfluoroalkyl Substance (PFAS) Destruction Technology for Water Treatment
SBIR 第一阶段:用于水处理的可调谐深紫外线 (UV) 多氟烷基物质 (PFAS) 破坏技术
- 批准号:
2335229 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant