CAREER: Hybrid Bronzes: Mixed-Valence Hybrid Metal Oxides as a Tunable Material Platform
职业:混合青铜:混合价混合金属氧化物作为可调材料平台
基本信息
- 批准号:2338086
- 负责人:
- 金额:$ 79.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2029-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: Non-Technical SummaryRenewable energy technologies such as solar cells, batteries, and fuel cells are critical for addressing urgent global energy demand in a sustainable manner. These systems rely on materials that are highly stable and, as a function of their ordered structures, display important properties for energy-related use such as efficient light absorption and the ability to easily conduct electrical current. However, it is challenging and costly to synthesize and modify important crystalline solids such as metal oxides. The chemical tuning of molecules, on the other hand, is more precise and less energy intensive. With this CAREER award, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, the principal investigator and his research group investigate how to combine the best qualities of molecules and materials by developing design principles for an emerging new class of organic-inorganic materials called hybrid bronzes. These easily synthesized, low-cost, and air-/water-stable compounds achieve atomic-level integration of metal oxide layers with molecules having adjustable functions, thereby providing a tunable material platform that can cater to numerous desired applications. This work elucidates structure-property relationships governing the electronic behavior of hybrid bronzes to inform their ultimate implementation in energy-related technologies. Furthermore, this interdisciplinary research program trains undergraduate and graduate students as the diverse future STEM workforce and develops a multi-faceted instructional video platform called "Lab Hacks" that seeks to lower resource and knowledge barriers in STEM education and research.PART 2: Technical SummaryHybrid bronzes are bulk crystalline materials that combine alternating layers of (1) mixed-valence metal oxide sheets featuring tunable charge-carrier densities and band gaps and (2) molecular arrays with the potential for chemical-, redox-, and photo-activity. Here, the term "bronze" refers to the metallic luster that quasi-free electrons impart to reduced metal oxides and it is these mobile carriers that ultimately enable such electronic versatility. To advance the hybrid bronze platform toward energy-related use, it is necessary to understand and subsequently control their redox activity, light absorption, and charge transport. Hybrid bronzes also represent versatile model systems that can probe questions regarding two-dimensional solid-state phenomena. With this CAREER award, supported by the Solid State and Materials Chemistry program in NSF’s Division of Materials Research, the principal investigator and his research group leverage mild aqueous self-assembly reactions to produce bulk crystalline hybrid bronzes with a fine degree of synthetic control. A suite of diffraction-based, spectroscopic, and electronic characterization techniques including high-pressure methods are then employed to elucidate structure-property relationships. Specifically, evaluation of systematically varied molecular structure-directing effects illuminates how charge transport is dictated within inorganic layers. Principles governing stimulus-driven charge transfer phenomena between molecules and layers are explored through optoelectronic, electrochemical, and charge transport analysis, followed by iterative molecular tuning. Further, pressure/strain-induced structure changes are employed as a unique approach to dictating electronic property transitions within hybrid bronzes. Overall, this work reveals connections between the structures and electronic behaviors of hybrid bronzes, including emergent phenomena, to demonstrate design rules enabling their customization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分:太阳能电池、蓄电池和燃料电池等可再生能源技术对于以可持续的方式解决全球紧迫的能源需求至关重要。这些系统依赖于高度稳定的材料,并且作为其有序结构的函数,显示出与能量相关的重要特性,例如有效的光吸收和容易传导电流的能力。然而,合成和改性重要的结晶固体如金属氧化物具有挑战性且成本高。另一方面,分子的化学调谐更精确,能量密集度更低。在NSF材料研究部的固态和材料化学项目的支持下,首席研究员和他的研究小组通过为一种新兴的新型有机-无机材料(称为混合青铜)开发设计原理,研究如何将分子和材料的最佳品质联合收割机结合起来。这些易于合成、低成本且空气/水稳定的化合物实现了金属氧化物层与具有可调节功能的分子的原子级集成,从而提供了可满足许多所需应用的可调材料平台。这项工作阐明了控制混合青铜电子行为的结构-性质关系,以告知其在能源相关技术中的最终实现。此外,这个跨学科的研究计划培养本科生和研究生作为未来多元化的STEM劳动力,并开发了一个多方面的教学视频平台,称为“实验室黑客”,旨在降低STEM教育和研究中的资源和知识障碍。混合青铜是块体晶体材料,其结合(1)具有可调电荷的混合价金属氧化物片的交替层的联合收割机,载流子密度和带隙,以及(2)具有化学活性、氧化还原活性和光活性潜力的分子阵列。在这里,术语“青铜色”是指准自由电子赋予还原金属氧化物的金属光泽,正是这些移动的载体最终实现了这种电子多功能性。为了将混合青铜平台推向与能源相关的用途,有必要了解并随后控制它们的氧化还原活性、光吸收和电荷传输。混合青铜器也代表了多功能的模型系统,可以探测有关二维固态现象的问题。通过这项由NSF材料研究部门的固态和材料化学计划支持的职业奖,首席研究员和他的研究小组利用温和的水溶液自组装反应来生产具有精细合成控制程度的块状结晶混合青铜。一套基于衍射,光谱和电子表征技术,包括高压方法,然后阐明结构与性能的关系。具体而言,系统地不同的分子结构导向效应的评价阐明了如何在无机层内决定电荷传输。通过光电,电化学和电荷输运分析,然后通过迭代分子调谐,探索刺激驱动的分子和层之间的电荷转移现象的原则。此外,压力/应变引起的结构变化被采用作为一种独特的方法来支配混合青铜内的电子性质的转变。总的来说,这项工作揭示了混合青铜的结构和电子行为之间的联系,包括紧急现象,以证明设计规则,使其定制。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Jaffe其他文献
Metal–organic frameworks as Osub2/sub-selective adsorbents for air separations
- DOI:
10.1039/d2sc03577d - 发表时间:
2022-09-14 - 期刊:
- 影响因子:7.400
- 作者:
David E. Jaramillo;Adam Jaffe;Benjamin E. R. Snyder;Alex Smith;Eric Taw;Rachel C. Rohde;Matthew N. Dods;William DeSnoo;Katie R. Meihaus;T. David Harris;Jeffrey B. Neaton;Jeffrey R. Long - 通讯作者:
Jeffrey R. Long
Annual Review Clinic improves care in children with cystic fibrosis
- DOI:
10.1016/j.jcf.2013.09.001 - 发表时间:
2014-03-01 - 期刊:
- 影响因子:
- 作者:
Sandra Chuang;Michael Doumit;Rebecca McDonald;Erika Hennessy;Tamarah Katz;Adam Jaffe - 通讯作者:
Adam Jaffe
Characterizing Bipartite Graphs Which Admit a k-NU Polymorphism via Absolute Retracts
- DOI:
10.1007/s00373-021-02367-w - 发表时间:
2021-07-13 - 期刊:
- 影响因子:0.600
- 作者:
Adam Jaffe - 通讯作者:
Adam Jaffe
Health of boys in secure care
安全护理中男孩的健康
- DOI:
10.1136/adc.87.6.521 - 发表时间:
2002 - 期刊:
- 影响因子:5.2
- 作者:
Adam Jaffe;R. Buchdahl;Andrew Bush;I. Balfour - 通讯作者:
I. Balfour
Assessment of hypoxia in children with cystic fibrosis
囊性纤维化儿童缺氧的评估
- DOI:
10.1136/adc.2005.071795 - 发表时间:
2005 - 期刊:
- 影响因子:5.2
- 作者:
D. S. Urquhart;Hugh Montgomery;Adam Jaffe - 通讯作者:
Adam Jaffe
Adam Jaffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Jaffe', 18)}}的其他基金
The Sources and Effects of Knowledge Spillovers
知识溢出的来源和影响
- 批准号:
9320973 - 财政年份:1994
- 资助金额:
$ 79.75万 - 项目类别:
Continuing Grant
Using Patent Citation Data to Trace Knowledge Flows
使用专利引文数据追踪知识流
- 批准号:
9413099 - 财政年份:1994
- 资助金额:
$ 79.75万 - 项目类别:
Standard Grant
相似国自然基金
一种经心房覆膜血管支架植入 Hybrid Fontan 手术的 临床新技术研究
- 批准号:20Y11910600
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
- 批准号:11875146
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
- 批准号:81770777
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
PSMA靶向Hybrid-SiO2基纳米诊疗剂用于前列腺癌HIFU治疗及增效机制研究
- 批准号:81601499
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
穿戴式步行辅助的Hybrid控制体系及其据需辅助效应研究
- 批准号:51505048
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Hybrid数据的复杂系统辨识与优化设计及在低渗透油井中的应用
- 批准号:61572084
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:面上项目
波-流-植被耦合环境下射流Hybrid RANS/LES数值模拟研究
- 批准号:51509075
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Hybrid加速结构的理论及预制研究
- 批准号:11475201
- 批准年份:2014
- 资助金额:100.0 万元
- 项目类别:面上项目
基于BGM法结合Hybrid同化开展暴雨短期集合预报方法研究
- 批准号:41205073
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Hybrid方法的大型冗余驱动机构控制策略研究
- 批准号:51205392
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
- 批准号:
2339911 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Continuing Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Standard Grant
Nanoengineered hybrid coatings that control inflammation to artificial bone
控制人造骨炎症的纳米工程混合涂层
- 批准号:
DP240103271 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Discovery Projects
Development of hybrid permanent combined-function magnet for sustainable accelerators
开发用于可持续加速器的混合永磁组合功能磁体
- 批准号:
24K21037 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Fellowship
Hybrid Electrochemically-paired Light Irradiated Organic Synthesis (Acronym: HELIOS)
混合电化学配对光照射有机合成(缩写:HELIOS)
- 批准号:
EP/Y037413/1 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Research Grant
Sustainable Responsive Hybrid Ionic Liquid-Polymer Gel Electrolyte Materials
可持续响应杂化离子液体-聚合物凝胶电解质材料
- 批准号:
EP/Y005309/1 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Research Grant
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Standard Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Standard Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
- 批准号:
2344586 - 财政年份:2024
- 资助金额:
$ 79.75万 - 项目类别:
Standard Grant