Topics in Number Theory
数论专题
基本信息
- 批准号:0070523
- 负责人:
- 金额:$ 44.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-15 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Granville's proposal.This award will support the research of the investigator and severalgraduate students on various topics in number theory. In the last few years the investigator, in collaboration with Soundararajan, has been revisiting the central topic of mean values of multiplicative functions, and strengthening known results as well as adding several new perspectives. In particular they have shown that such questions are in some sense equivalent to problems about integral delay equations. Granville proposes continuing this work, particularly looking at the range of values taken and to solve some thorny optimization problems. This, in turn, should give new results on known problems about values of (Dirichlet and Hasse-Weil) L-functions at 1, bounds on leastmth power residues, and perhaps even distribution of zeros of L-functions.The investigator also proposes continuing his work, with Stark, on the connection between the abc-conjecture and Siegel zeros: On the one hand, looking further at Diophantine equations satisfied by modular functions;on the other hand, with Tucker, looking at whether the unproved abc-conjecture can be replaced by a weaker but feasibly provable hypothesis.The investigator, with collaborators, is looking at the finer aspects of thedistribution of multiplicative functions. The functions turn up in many different areas in mathematics, physics and cryptography.The investigator recently showed how an understanding of such questionsis closely related to the seemingly unrelated area of `integral delay equations'' which are analyzed extensively in understanding howvarious biological mechanisms work. Thus results and conjectures about mean values of multiplicative functions can be ``translated'' intoresults and conjectures about integral delay equations, so that the perspectives of one field can be brought to bear on the other, and vice-versa.This has already led to some new results and fresh questions in integral-delayequations, and the investigator has been asked to present his ideas in a series of lectures at a major conference in that area, to stimulate furtherinteraction. In addition the investigator has been working with students, particularly from the Deep South, to get their PhDs, and obtain good positions in research, education, industry and government, with a training that will help them bring a fresh perspective to their future professions. This group wasrecently ranked tenth in the US.
Granville的建议摘要。该奖项将支持研究者和几名研究生在数论的各个主题上的研究。在过去的几年里,研究者与Soundararajan合作,重新审视了乘法函数均值的中心主题,并加强了已知的结果,同时增加了一些新的观点。特别地,他们证明了这些问题在某种意义上等价于关于积分延迟方程的问题。Granville建议继续这项工作,特别是关注所取值的范围,并解决一些棘手的优化问题。反过来,对于已知的关于(Dirichlet和Hasse-Weil) l -函数在1处的值,最小次幂残数的界,甚至l -函数的零点分布的问题,这应该给出新的结果。研究者还建议与Stark一起继续研究abc猜想与西格尔零之间的联系:一方面,进一步研究由模函数满足的丢番图方程;另一方面,与塔克一起,研究未经证明的abc猜想是否可以被一个较弱但可行的可证明假设所取代。研究者和合作者正在研究乘法函数分布的更精细的方面。这些函数出现在数学、物理和密码学的许多不同领域。研究者最近展示了对这些问题的理解是如何与看似无关的“积分延迟方程”领域密切相关的,该领域在理解各种生物机制的工作原理方面得到了广泛的分析。因此,关于乘法函数平均值的结果和猜想可以“转换”为关于积分延迟方程的结果和猜想,这样一个领域的观点就可以被带到另一个领域,反之亦然。这已经导致了积分延迟方程的一些新结果和新问题,研究者被要求在该领域的一个主要会议上发表一系列演讲,以激发进一步的互动。此外,研究人员一直与学生,特别是来自南方腹地的学生合作,以获得博士学位,并在研究,教育,工业和政府中获得良好的职位,并提供培训,帮助他们为未来的职业带来新的视角。该集团最近在美国排名第十。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clinton McCrory其他文献
Clinton McCrory的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clinton McCrory', 18)}}的其他基金
Interactive Internet-Based Teaching of Multivariable Calculus and Geometry
多元微积分和几何的交互式网络教学
- 批准号:
0509899 - 财政年份:2005
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
Vertical Integral of the Research and Educational Activities in Mathematics at the University of Georgia
佐治亚大学数学研究和教育活动的垂直整合
- 批准号:
0089927 - 财政年份:2001
- 资助金额:
$ 44.08万 - 项目类别:
Continuing Grant
Mathematical Sciences: Low-dimensional topology and geometry
数学科学:低维拓扑和几何
- 批准号:
9107505 - 财政年份:1991
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology of Varieties and Manifolds
数学科学:簇和流形的拓扑
- 批准号:
8603085 - 财政年份:1986
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Topology Conference; Athens, Georgia; August 5-16, 1985
数学科学:几何拓扑会议;
- 批准号:
8405265 - 财政年份:1985
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology of Singularities
数学科学:奇点拓扑
- 批准号:
8403216 - 财政年份:1984
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
On the Liouville function in short intervals and further topics in analytic number theory
短区间内的刘维尔函数以及解析数论中的进一步主题
- 批准号:
567986-2022 - 财政年份:2022
- 资助金额:
$ 44.08万 - 项目类别:
Postdoctoral Fellowships
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2022
- 资助金额:
$ 44.08万 - 项目类别:
Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
- 批准号:
2200565 - 财政年份:2022
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2021
- 资助金额:
$ 44.08万 - 项目类别:
Discovery Grants Program - Individual
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2020
- 资助金额:
$ 44.08万 - 项目类别:
Discovery Grants Program - Individual
Topics in Algebraic Geometry and Number Theory
代数几何和数论专题
- 批准号:
2443753 - 财政年份:2020
- 资助金额:
$ 44.08万 - 项目类别:
Studentship
Topics in multiplicative and probabilistic number theory
乘法和概率数论主题
- 批准号:
RGPIN-2018-05699 - 财政年份:2019
- 资助金额:
$ 44.08万 - 项目类别:
Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
- 批准号:
1802224 - 财政年份:2018
- 资助金额:
$ 44.08万 - 项目类别:
Standard Grant