Algebra, Number Theory and Algebraic Geometry
代数、数论和代数几何
基本信息
- 批准号:0070674
- 负责人:
- 金额:$ 52.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator (Gross) and his colleagues (Kazhdan and Sommers) areworking on an assortment of problems in number theory, representationtheory, and algebraic geometry. Gross will study Fourier coefficients formodular forms on quaternionic real groups (with N. Wallach), theexceptional theta correspondences in the style of Siegel (with W.T. Gan),and various theories of modular forms modulo a prime. He will alsoinvestigate subvarieties of Shimura varieties in the middle dimension andmotives with a fixed Galois group (with G. Savin). Kazhdan will work onLanglands' lifting and the theory of unipotent crystals, perverse sheaveson loop spaces, and the theory of algebraic integration. Sommers willstudy representations arising from covers of nilpotent orbits and attemptto resolve the normality question for the closure of nilpotent orbits in acomplex Lie algebra. He will also study connections with unitaryrepresentations of complex Lie groups. The proposal deals with several questions in the subfields ofmathematics known as number theory, representation theory, and algebraicgeometry. Many of these questions are motivated by the philosophy thatalgebraic information can be obtained by geometric methods. At the centerof the work is the use of a symmetry group, or algebraic group, which isan object that is both algebraic and geometric in nature. These symmetrygroups arise naturally in physics and chemistry. It is not too ambitiousto say that the solution to the problems in this proposal will one dayaffect research in cryptography, theoretical physics, and quantumcomputing.
这位研究人员(格罗斯)和他的同事(卡兹丹和萨默斯)正在研究数论、表示论和代数几何中的一系列问题。格罗斯将研究四元数实群上模形式的傅立叶系数(与N.Wallach),Siegel风格的例外theta对应(与W.T.Gan),以及模为素数的模形式的各种理论。他还将在中间维度研究下村品种的亚种,并与固定的伽罗瓦群(与G.萨文)一起研究动机。Kazhdan将致力于朗兰兹提升和单幂晶体理论、环空间上的倒叶理论以及代数积分理论。萨默斯将研究幂零轨道覆盖的表示,并试图解决复李代数中幂零轨道闭合的正规性问题。他还将研究与复李群的么正表示之间的联系。该提案涉及数论、表示论和代数几何等数学分支领域中的几个问题。这些问题中的许多都是基于这样一种哲学,即代数信息可以通过几何方法获得。这项工作的中心是对称群或代数群的使用,它是一个本质上既是代数又是几何的对象。这些对称基团在物理和化学中自然产生。要说这个提案中问题的解决有朝一日会影响密码学、理论物理和量子计算的研究,这并不过分雄心勃勃。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benedict Gross其他文献
App-basierte Systeme zur Ersthelferalarmierung
- DOI:
10.1007/s10049-018-0518-4 - 发表时间:
2018-09-12 - 期刊:
- 影响因子:1.100
- 作者:
Benedict Gross;Florian Schanderl;Nele Staedt;Christian Elsner - 通讯作者:
Christian Elsner
Benedict Gross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benedict Gross', 18)}}的其他基金
Representation Theory, Automorphic Forms, and Complex Geometry
表示论、自守形式和复几何
- 批准号:
1302848 - 财政年份:2013
- 资助金额:
$ 52.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Periods of automorphic forms and applications to L-functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
- 批准号:
1065527 - 财政年份:2011
- 资助金额:
$ 52.7万 - 项目类别:
Standard Grant
Topics in representation theory and number theory
表示论和数论主题
- 批准号:
0901102 - 财政年份:2009
- 资助金额:
$ 52.7万 - 项目类别:
Standard Grant
Algebra, Number Theory and Algebraic Geometry
代数、数论和代数几何
- 批准号:
9700477 - 财政年份:1997
- 资助金额:
$ 52.7万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
- 批准号:
8416373 - 财政年份:1984
- 资助金额:
$ 52.7万 - 项目类别:
Standard Grant
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Model theory with applications to algebra, geometry and number theory
模型理论及其在代数、几何和数论中的应用
- 批准号:
RGPIN-2021-02474 - 财政年份:2022
- 资助金额:
$ 52.7万 - 项目类别:
Discovery Grants Program - Individual
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 52.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
REU Site: Algebra, Graphs, and Number Theory at the University of Texas at Tyler
REU 网站:德克萨斯大学泰勒分校的代数、图和数论
- 批准号:
2149921 - 财政年份:2022
- 资助金额:
$ 52.7万 - 项目类别:
Standard Grant
Model theory with applications to algebra, geometry and number theory
模型理论及其在代数、几何和数论中的应用
- 批准号:
RGPIN-2021-02474 - 财政年份:2021
- 资助金额:
$ 52.7万 - 项目类别:
Discovery Grants Program - Individual
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2021
- 资助金额:
$ 52.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
REU Site: Algebra and Number Theory at Emory University
REU 网站:埃默里大学代数与数论
- 批准号:
1849959 - 财政年份:2019
- 资助金额:
$ 52.7万 - 项目类别:
Continuing Grant
REU Site: Algebra and Number Theory at Emory University
REU 网站:埃默里大学代数与数论
- 批准号:
2002265 - 财政年份:2019
- 资助金额:
$ 52.7万 - 项目类别:
Continuing Grant
RTG: Algebraic Geometry, Applied Algebra, and Number Theory at the University of Wisconsin
RTG:威斯康星大学代数几何、应用代数和数论
- 批准号:
1502553 - 财政年份:2015
- 资助金额:
$ 52.7万 - 项目类别:
Continuing Grant
RTG: Research Training Group in Algebra, Algebraic Geometry, and Number Theory
RTG:代数、代数几何和数论研究培训小组
- 批准号:
1502651 - 财政年份:2015
- 资助金额:
$ 52.7万 - 项目类别:
Continuing Grant
Arithmetic and algebraic differentiation: Witt vectors, number theory, and differential algebra
算术和代数微分:维特向量、数论和微分代数
- 批准号:
1502219 - 财政年份:2015
- 资助金额:
$ 52.7万 - 项目类别:
Standard Grant