FRG: Collaborative Research: Periods of automorphic forms and applications to L-functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
基本信息
- 批准号:1065527
- 负责人:
- 金额:$ 19.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project centers around the interactions between periods of automorphic forms, automorphic representations, and arithmetic algebraic geometry. In particular the PIs propose to work on several problems on the general derivative conjecture, analysis and arithmetic of Fourier coefficients on exceptional groups, bounds on heights, computational study of nontempered periods, averages/nonvanishing of derivatives of L-series. Recently the study of periods has yielded new results and proofs about L-functions, breakthroughs towards conjectures about algebraic cycles, and new perspectives on classical questions of representation theory. Combined with other tools, periods have also enhanced our understanding of equidistribution problems and topology on locally symmetric spaces. The PIs are at the forefront of these developments. The proposed framework presents an ambitious plan to work on and formulate conjectures incorporating/connecting the recent groundbreaking works in these areas. The research topic is central to several areas of mathematics (arithmetic geometry, automorphic representation theory, analytic number theory). A long range goal of the project is to establish a network of scientists working in automorphic representations, number theory, and arithmetic geometry. The PIs envision a group of PhD students and post-docs participating actively in the proposed Research Retreats and Annual Workshops. This group would include the 15 PhD students presently advised by the PIs.
这个项目围绕着自同构形式、自同构表示和算术代数几何的周期之间的相互作用展开。特别是,PI提出了关于广义导数猜想、例外群上傅里叶系数的分析和算法、高度的界、非调和周期的计算研究、L级数的导数的平均/非零化等几个问题。近年来,周期研究对L函数的研究有了新的结果和证明,对代数圈猜想的研究有了突破,对表示论经典问题的研究有了新的视角。结合其他工具,周期还加深了我们对局部对称空间上的等分布问题和拓扑的理解。私人投资倡议处在这些发展的前列。拟议的框架提出了一项雄心勃勃的计划,以工作和制定猜想,纳入/联系这些领域最近的开创性工作。该研究课题是数学的几个领域(算术几何、自同构表示理论、解析数论)的中心。该项目的一个长期目标是建立一个研究自同构表示、数论和算术几何的科学家网络。PIS设想一群博士生和博士后积极参加拟议的研究务虚会和年度研讨会。这一组将包括目前由私人投资促进机构建议的15名博士生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benedict Gross其他文献
App-basierte Systeme zur Ersthelferalarmierung
- DOI:
10.1007/s10049-018-0518-4 - 发表时间:
2018-09-12 - 期刊:
- 影响因子:1.100
- 作者:
Benedict Gross;Florian Schanderl;Nele Staedt;Christian Elsner - 通讯作者:
Christian Elsner
Benedict Gross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benedict Gross', 18)}}的其他基金
Representation Theory, Automorphic Forms, and Complex Geometry
表示论、自守形式和复几何
- 批准号:
1302848 - 财政年份:2013
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Topics in representation theory and number theory
表示论和数论主题
- 批准号:
0901102 - 财政年份:2009
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Algebra, Number Theory and Algebraic Geometry
代数、数论和代数几何
- 批准号:
0070674 - 财政年份:2000
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
Algebra, Number Theory and Algebraic Geometry
代数、数论和代数几何
- 批准号:
9700477 - 财政年份:1997
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
- 批准号:
8416373 - 财政年份:1984
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant














{{item.name}}会员




