'The Nonlinear Dynamical Foundations of Transition State Theory in Systems with Three or More Degrees-of-Freedom'
“三自由度或更多自由度系统中过渡态理论的非线性动力学基础”
基本信息
- 批准号:0071338
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract - DMS-0071338Mathematical Sciences: The Nonlinear Dynamical Foundations of Transition State Theory in Systems with Three or More Degrees of FreedomAbstract0071338 WigginsThis research project is concerned with understanding the nonlinear dynamical foundations of transition state theory in systems with three or more degrees of freedom. While there has been much progress along these lines for two degree-of-freedom systems, there has been little progress of a similar nature for systems with three or more degrees-of-freedom. The geometrical point of view of dynamical systems theory offers a framework for discovering the types of higher dimensional phase space structures that govern reaction rates and energy flow in molecules. We will apply this approach to several problems: three dimensional Rydberg atoms in crossed electric and magnetic fields, the London-Eyring-Polanti-Sato potential, rotation-vibration interaction in formaldehyde, and a study of energy flow through resonances in carbonyl sulphide (OCS). In each case we will show that there are higher dimensional phase space structures that act as a "transition state." Indeed, it may even be possible to generalize the very useful idea of a periodic orbit dividing surface to systems with three or more degrees of freedom. Our research will also focus on developing computational approaches to realize these geometric structures in these specific problems. We will also develop a wavelet-based frequency map analysis tool for studying energy flow in resonances. This work will be carried out in collaboration with chemists and physicists, as well as computational scientists.This project investigates fundamental questions concerning chemical reactions. The underlying mathematical questions involve the nonlinear dynamical foundations of transition state theory in systems with three or more degrees of freedom. This is the fundamental theory that allows predictions concerning chemical reaction dynamics. While there is a fairly complete understanding of this theory for simple, low dimensional, systems, there is as yet no analogous theoretical framework for more physically realistic high dimensional systems. Such a theory will involve mathematical description of surfaces in dimensions larger than four and will require development of computational tools for realizing and visualizing such surfaces. This will result in a detailed understanding of the dynamics of how molecules break up and of how atoms combine to form molecules. The research is interdisciplinary, involving the collaboration of chemists, physicists, and computational scientists.
NSF奖摘要-DMS-0071338数学科学:三个或更多自由度系统中过渡态理论的非线性动力学基础这个研究项目致力于理解三个或更多自由度系统中过渡态理论的非线性动力学基础。虽然两自由度系统在这些方面取得了很大进展,但对于三自由度或更多自由度系统,几乎没有类似性质的进展。动力学系统理论的几何观点为发现控制分子中反应速率和能量流动的高维相空间结构类型提供了一个框架。我们将把这种方法应用于几个问题:交叉电场和磁场中的三维Rydberg原子,London-Eyring-Polanti-Sato势,甲醛中的旋转-振动相互作用,以及在羰基硫化物(OCS)中通过共振的能量流动的研究。在每种情况下,我们都将证明存在起“过渡态”作用的高维相空间结构。事实上,甚至有可能将周期轨道分割面的非常有用的想法推广到具有三个或更多自由度的系统。我们的研究还将集中于开发计算方法来实现这些特定问题中的几何结构。我们还将开发一个基于小波的频率图分析工具,用于研究共振中的能量流动。这项工作将与化学家和物理学家以及计算科学家合作进行。这个项目研究关于化学反应的基本问题。基本的数学问题涉及三个或更多自由度系统的过渡态理论的非线性动力学基础。这是关于化学反应动力学预测的基本理论。虽然对于简单、低维系统的这一理论已经有了相当完整的理解,但对于更接近物理现实的高维系统,目前还没有类似的理论框架。这种理论将涉及对维度大于四的表面进行数学描述,并需要开发实现这种表面并使其可视化的计算工具。这将导致对分子如何分解的动力学以及原子如何结合形成分子的详细了解。这项研究是跨学科的,涉及化学家、物理学家和计算科学家的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Wiggins其他文献
Phase Space Structure and Transport in a Caldera Potential Energy Surface
破火山口势能面的相空间结构和输运
- DOI:
10.1142/s0218127418300422 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Katsanikas;Stephen Wiggins - 通讯作者:
Stephen Wiggins
ENSO dynamics in current climate models: an investigation using nonlinear dimensionality reduction
当前气候模型中的 ENSO 动力学:使用非线性降维的研究
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
I. Ross;P. Valdes;Stephen Wiggins - 通讯作者:
Stephen Wiggins
Negligibility of small divisor effects in the normal form theory for nearly-integrable Hamiltonians with decaying non-autonomous perturbations
- DOI:
10.1007/s10569-016-9684-1 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:1.400
- 作者:
Alessandro Fortunati;Stephen Wiggins - 通讯作者:
Stephen Wiggins
Detection of Phase Space Structures of the Cat Map with Lagrangian Descriptors
- DOI:
10.1134/s1560354718060096 - 发表时间:
2018-12-12 - 期刊:
- 影响因子:0.800
- 作者:
Víctor J. García-Garrido;Francisco Balibrea-Iniesta;Stephen Wiggins;Ana M. Mancho;Carlos Lopesino - 通讯作者:
Carlos Lopesino
Optimizing mixing in channel flows: kinematic aspects associated with secondary flows in the cross-section
- DOI:
10.1007/s10404-010-0656-6 - 发表时间:
2010-08-06 - 期刊:
- 影响因子:2.500
- 作者:
Kevin L. McIlhany;Stephen Wiggins - 通讯作者:
Stephen Wiggins
Stephen Wiggins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Wiggins', 18)}}的其他基金
U.S.-Spain Cooperative Research: Computational and Analytical Dynamical Systems Techniques for the Study of Global Dynamics in Theoretical Chemistry
美国-西班牙合作研究:理论化学中全球动力学研究的计算和分析动力系统技术
- 批准号:
9910336 - 财政年份:1999
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
US-France Cooperative Research: Geometrical Analysis of the Vibrational Dynamics of Highly Excited Molecules with Three Degrees-of-Freedom
美法合作研究:三自由度高激发分子振动动力学的几何分析
- 批准号:
9910196 - 财政年份:1999
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Theoretical Chemistry, Dynamical Systems, and the Geometry of Global Phase Space Dynamics
理论化学、动力系统和全局相空间动力学几何
- 批准号:
9704759 - 财政年份:1997
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: Global Dynamics and Geometry in High Dimensional Nonlinear Dynamical Systems
数学科学:高维非线性动力系统中的全局动力学和几何
- 批准号:
9403691 - 财政年份:1994
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
- 批准号:
2349508 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant