Multivariate Analysis, Ranks, and Multivariate Ranks
多元分析、排名和多元排名
基本信息
- 批准号:0071757
- 负责人:
- 金额:$ 7.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project explores two areas that utilize ranked data. The first aims to develop statistical procedures that are robust to violations of assumptions while still working close to optimally when the assumption holds. There is a long history of such robust procedures based on ranking the data, that is, replacing the observed values in the data with the values' ranks. This process helps to ameliorate the effects of unusually wild observations that can ruin an analysis. A number of multivariate situations in which there has previously been little work using rank procedures will be the main focus of this project. These include certain structural models defining the relationship of variables, testing for runs in multivariate data observed over time, estimating variances and covariances, and testing whether certain variables are conditionally independent given some other variables. A proposed method for defining multivariate ranks ("iterated ranks") so that their distribution is independent of the distribution of the underlying observations will be explored.The second area looks at modeling rank data directly, where the data arise from judges ranking particular objects based on their preferences. One popular model posits that judges and objects can be arrayed along a line, where a judge is located nearest the judge's most preferred object, next closest to the second most preferred object, etc. A new model that also allows judges to locate themselves nearest the objects they prefer least will be considered. An extension of these models in which there is provision for a small percentage of judges to act not at all according to the model will also be considered.
该项目探索了利用排名数据的两个领域。第一个目标是开发统计程序,使其对假设的违反具有鲁棒性,同时在假设成立时仍然接近最优。这种基于数据排序的稳健程序由来已久,也就是说,用数据中的观测值替换这些值的排名。这一过程有助于改善可能破坏分析的异常异常的观察结果的影响。一些以前很少使用秩过程的多变量情况将是这个项目的主要焦点。这些包括定义变量关系的某些结构模型,在一段时间内观察到的多变量数据中测试运行,估计方差和协方差,以及在给定其他变量的情况下测试某些变量是否有条件独立。本文将探讨一种定义多元秩(“迭代秩”)的建议方法,使其分布独立于基础观测值的分布。第二个领域着眼于直接建模排名数据,其中数据来自法官根据他们的偏好对特定对象进行排名。一个流行的模型假设法官和物体可以沿着一条线排列,其中法官位于离法官最喜欢的物体最近的地方,其次靠近第二喜欢的物体,等等。一种新的模式也将允许法官将自己定位到离他们最不喜欢的物体最近的地方。还将考虑扩大这些模式,其中规定一小部分法官完全不按照该模式行事。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Marden其他文献
John Marden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Marden', 18)}}的其他基金
Interactive Undergraduate Statistical Computing Laboratory
交互式本科生统计计算实验室
- 批准号:
9650048 - 财政年份:1996
- 资助金额:
$ 7.49万 - 项目类别:
Standard Grant
Mathematical Sciences: Multivariate Analysis, Rank Data andMultivariate Ranks
数学科学:多元分析、排名数据和多元排名
- 批准号:
9504525 - 财政年份:1995
- 资助金额:
$ 7.49万 - 项目类别:
Continuing Grant
Mathematical Sciences: Stochastic Models and Visualization
数学科学:随机模型和可视化
- 批准号:
9304244 - 财政年份:1993
- 资助金额:
$ 7.49万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8017152 - 财政年份:1980
- 资助金额:
$ 7.49万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
- 批准号:
10089592 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
- 批准号:
ES/Y004906/1 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 7.49万 - 项目类别:
Standard Grant














{{item.name}}会员




