Ultrahigh Pressure Studies of Hydrogen and its Isotopes
氢及其同位素的超高压研究
基本信息
- 批准号:0071828
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the great outstanding problems and challenges to condensed matter physics is a determination and understanding of the phases and properties of solid hydrogen at high density. A number of phases have been predicted, in particular the Wigner-Huntington transition to the atomic metallic state, which may be a High-Tc superconductor. In addition, detailed electronic band structure calculations predict that the high-density molecular phase should be metallic and exhibit high temperature superconductivity. Currently there are three phases known to exist experimentally, the low-pressure phase, the broken symmetry phase at a pressure of 110 GPa, and the A-phase at 150 GPa. This research program will pursue the study of solid hydrogen and its isotopes, deuterium and HD, to multi-megabar pressures. An effort will be dedicated to extend the pressure to the 400 GPa range in the search for the metallic phases of hydrogen. The DC electrical conductivity of the A-phase will be measured as function of temperature and pressure in order to determine whether hydrogen is metallic at these pressures or, if not, will determine the band gap as a function of pressure. Newly developed diamond anvil cells (DACs) with high quality, flaw-free and very low impurity synthetic diamonds will be use in these studies. These improved DACs are expected to overcome the limitations inherent in conventional designs. Spectroscopic techniques will be used to search for and explore new phase lines. The conductive properties will be investigated either by DC conductivity measurements or optical spectroscopy, characterized by a Drude free-electron spectrum. A determination of the high-pressure phases and their properties will be a major accomplishment for theory and experiment. Graduate students and post doctoral research associates will participate in this research and will thereby acquire knowledge and skills that prepare them for employment in industry, academia, or government.%%%One of the great outstanding problems and challenges to condensed matter physics is the determination and understanding of the atom structure and properties of solid hydrogen at high density. Hydrogen freezes at -260 degrees centigrade. The solid has low density and is transparent to the eye. At high density the molecules are closer and the solid is predicted to become a metal and possibly become a high-temperature superconductor. At still higher densities the molecules are predicted to dissociate so that the solid is made up of atoms, rather than molecules, at the lattice sites. This transition to atomic-metallic hydrogen with its accompanying superconductivity was predicted over 65 years ago but has so far eluded detection. It is now believed that pressures in the range of 3 to 4 million atmospheres are required to achieve the densities needed to produce atomic-metallic hydrogen. It is the goal of this research to generate such pressures with so-called Diamond Anvil Cells (DACs) that are specially designed to overcome the limitations of conventional DACs. Electrical and optical spectroscopic methods will be used to search for evidence of the atomic-metallic state of hydrogen. The production of atomic-metallic hydrogen would be a major accomplishment, not only scientifically, but very likely also for technological reasons, for the same theory that predicts its existence also predicts that it will be a superconductor at room temperature, even after the pressure is released. These predictions are at the center of current debate about the properties of hydrogen under extreme conditions. A successful outcome of this project will not only settle one of the outstanding problems of contemporary condensed matter physics but will also open up new avenues for scientific discoveries and applications. This research is conducted with the assistance of graduate students and postdoctoral research associates. They will thereby acquire knowledge and skills in a contemporary area of condensed matter physics that will prepare them for productive employment in industry, academia, or government.***
高密度固体氢的相态和性质的确定和理解是凝聚态物理学面临的重大问题和挑战之一。许多相已经被预测,特别是Wigner-Huntington过渡到原子金属态,这可能是一个高Tc超导体。此外,详细的电子能带结构计算预测,高密度的分子相应该是金属的,并表现出高温超导性。目前已知实验上存在三个相,低压相、在110 GPa压力下的对称性破缺相和在150 GPa下的A相。这项研究计划将继续研究固体氢及其同位素,氘和HD,到几兆巴的压力。将致力于将压力扩展到400 GPa范围,以寻找氢的金属相。将测量A相的DC电导率作为温度和压力的函数,以确定氢在这些压力下是否是金属的,或者如果不是,将确定带隙作为压力的函数。 新开发的金刚石对顶砧单元(DAC)具有高质量、无杂质和极低杂质的合成金刚石将用于这些研究。这些改进的DAC有望克服传统设计中固有的局限性。光谱技术将被用来寻找和探索新的相线。导电性能将通过直流电导率测量或光学光谱法进行研究,其特征在于Drude自由电子光谱。高压相及其性质的确定将是理论和实验的重大成就。研究生和博士后研究助理将参与这项研究,从而获得知识和技能,为他们在工业界,学术界或政府就业做好准备。高密度固体氢的原子结构和性质的确定和理解是凝聚态物理学面临的重大问题和挑战之一。氢在摄氏零下260度结冰。该固体具有低密度并且对眼睛是透明的。在高密度下,分子更接近,预计固体将成为金属,并可能成为高温超导体。在更高的密度下,分子预计会解离,因此固体在晶格位置由原子而不是分子组成。这种向原子金属氢的转变及其伴随的超导性在65年前就被预测到了,但到目前为止还没有被探测到。现在认为,要达到产生原子金属氢所需的密度,需要300万至400万个大气压的压力。这项研究的目标是利用所谓的金刚石砧座单元(DAC)产生这种压力,这种单元是专门设计来克服传统DAC的局限性的。电子和光学光谱方法将被用来寻找氢原子金属态的证据。原子金属氢的产生将是一项重大成就,不仅是科学上的,而且很可能也是技术上的,因为预测它存在的同一理论也预测它在室温下是超导体,即使在压力释放之后。这些预测是当前关于极端条件下氢的性质的争论的中心。 该项目的成功不仅将解决当代凝聚态物理学的一个突出问题,而且将为科学发现和应用开辟新的途径。 这项研究是在研究生和博士后研究助理的协助下进行的。因此,他们将获得凝聚态物理学当代领域的知识和技能,为他们在工业,学术界或政府的生产性就业做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isaac Silvera其他文献
A High Pressure Study of Ortho-para Conversion in Hydrogen by NMR
- DOI:
10.1023/a:1022557628828 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:1.400
- 作者:
Michael Pravica;Isaac Silvera - 通讯作者:
Isaac Silvera
Molten under pressure
在压力下熔化
- DOI:
10.1038/nphys1491 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:18.400
- 作者:
Isaac Silvera - 通讯作者:
Isaac Silvera
Isaac Silvera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isaac Silvera', 18)}}的其他基金
Metallic Properties of the Isotopes of Hydrogen
氢同位素的金属性质
- 批准号:
1905943 - 财政年份:2020
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Gordon Conference: Research at High Pressure, June 25 - 30, 2000, Meriden, NH
戈登会议:高压研究,2000 年 6 月 25 日至 30 日,新罕布什尔州梅里登
- 批准号:
0077814 - 财政年份:2000
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
NMR in a Diamond Anvil Cell, Ruby Fluorescence, and the Ultra-high Pressure Scale
金刚石砧池中的 NMR、红宝石荧光和超高压刻度
- 批准号:
9971326 - 财政年份:1999
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Ultrahigh Pressure Studies of Hydrogen and Its Isotopes
氢及其同位素的超高压研究
- 批准号:
9701500 - 财政年份:1997
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Development of a Small Helium Liquefier
小型氦液化器的研制
- 批准号:
9400122 - 财政年份:1994
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Fundamental Properties of Solids Under Ultra High Pressure (Materials Research)
超高压下固体的基本性质(材料研究)
- 批准号:
8600955 - 财政年份:1986
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Data Acquisition System For Low Temperature Solid State Physics Research
低温固体物理研究数据采集系统
- 批准号:
8213249 - 财政年份:1983
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
相似海外基金
Experimental Studies of Earth and Planetary Materials at Extreme Conditions of Pressure and Temperature
极端压力和温度条件下地球和行星材料的实验研究
- 批准号:
RGPIN-2018-05021 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
High Pressure Gas TPC Development Studies for the DUNE Near Detector
DUNE 近探测器的高压气体 TPC 开发研究
- 批准号:
2737479 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Studentship
Integrative Genomics into Genetic Association Studies of Blood Pressure and Stroke in African Americans
将基因组学整合到非裔美国人血压和中风的遗传关联研究中
- 批准号:
10372063 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Integrative Genomics into Genetic Association Studies of Blood Pressure and Stroke in African Americans
将基因组学整合到非裔美国人血压和中风的遗传关联研究中
- 批准号:
10656163 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Epidemiologic, imaging and pathological studies of the role of blood pressure variability in dementia etiology
血压变异性在痴呆病因中的作用的流行病学、影像学和病理学研究
- 批准号:
10188016 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Epidemiologic, imaging and pathological studies of the role of blood pressure variability in dementia etiology
血压变异性在痴呆病因中的作用的流行病学、影像学和病理学研究
- 批准号:
10766863 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Infrastructure Request for High Pressure Gas TPC Development Studies for the DUNE Near Detector
DUNE 近探测器高压气体 TPC 开发研究的基础设施要求
- 批准号:
ST/W005727/1 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Research Grant
Epidemiologic, imaging and pathological studies of the role of blood pressure variability in dementia etiology
血压变异性在痴呆病因中的作用的流行病学、影像学和病理学研究
- 批准号:
10456714 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Experimental Studies of Earth and Planetary Materials at Extreme Conditions of Pressure and Temperature
极端压力和温度条件下地球和行星材料的实验研究
- 批准号:
RGPIN-2018-05021 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Studies and Sensor Application of Fluorenylidene-Acridanes with Absorption Color Changes Depending on Pressure
吸收颜色随压力变化的亚芴基吖啶类化合物的研究和传感器应用
- 批准号:
21K18956 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)