Hydrogen at Ultra-High Pressure
超高压氢气
基本信息
- 批准号:0804378
- 负责人:
- 金额:$ 45.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TechnicalThis individual investigator award will support studies of hydrogen at ultra high pressures and temperatures. Earlier attempts to study hydrogen in the high-pressure high-temperature regime were thwarted by diffusion of hydrogen in the pressure cell materials and loss of sample or embrittlement and failure of cell materials. By utilizing pulsed laser heating this problem has been overcome since the time that the sample is hot and can diffuse is limited to the short time of the pulse. The emphasis will be on studies along and above the melting line of hydrogen. Hydrogen was predicted to have a peak in its melting line and this peak was recently experimentally demonstrated to occur below a megabar. The melting line studies will be extended to higher pressures. At lower pressures hydrogen melts from a molecular solid to a molecular liquid. With increasing temperature above the melting line hydrogen will dissociate and become monatomic with metallic conductivity. With increasing pressure beyond the peak the melting temperature may descend to zero Kelvin and one may observe melting directly from the molecular to the atomic phase. The atomic metallic liquid is expected to demonstrate two-component superconductivity (electrons and protons) as well as superfluidity Metallic hydrogen is predicted to be metastable due to a potential barrier. This barrier between the two phases may be responsible for inhibiting the transition from solid molecular to atomic metallic at low temperature. At high temperature thermal energy may allow the molecular phase to overcome the barrier and make the transition to metallic hydrogen. The broader impact of this research is the development of new methods to study materials under extreme conditions enriching the scientific community. This program involves young researchers at all levels-high school, undergraduate, graduate, and postdoctoral, as they develop to become the scientists of the future.Non-technicalOver 70 years ago Wigner and Huntington predicted that at high pressure hydrogen will transform from a molecular solid to an atomic metallic solid, later predicted to be a possible room temperature superconductor (no resistance to the flow of electricity) that is metastable, i.e., will remain in the metallic phase when pressure is released. Because of its extreme quantum nature, theory is challenged to make accurate predictions of hydrogen's properties and needs experimental guidance. Hydrogen has been pressurized to more than 10 times the predicted transition pressure and remains molecular insulating. Recent theory predicted a peak in the melting line and with pressure increasing beyond the peak the melting temperature could descend to zero Kelvin. Hydrogen would be an atomic metallic liquid with superconductivity of both the electrons and protons. Earlier attempts to study hydrogen in the extreme pressure-temperature regime were frustrated due to the proclivity for hydrogen to diffuse out of the high pressure apparatus or into the materials comprising the apparatus at high temperature. Using a newly developed method of pulsed laser heating, hydrogen can now be studied in this regime. The predicted peak in the melting line has been observed and this research program will extend studies to higher pressures in search of the metallic state. On a broader level, new techniques for high pressure and high-temperature/low-temperature are developed for the scientific community; if metallic hydrogen can be produced and is metastable it will be a high energy density material as well as the most powerful rocket propellant available to man. Students and postdoctoral fellows on all levels, the next generation of scientists, are involved in the developments and research.
技术这一个人研究人员奖将支持在超高压和高温下对氢的研究。早先在高压高温条件下研究氢的尝试由于氢在压力室材料中的扩散和样品的损失或电池材料的脆化和失效而受挫。通过使用脉冲激光加热,这个问题已经被克服,因为样品热并且可以扩散的时间被限制在脉冲的短时间内。重点将放在氢气熔点沿线和上方的研究上。据预测,氢在其熔化线上会有一个峰值,最近的实验证明,这个峰值出现在兆巴以下。熔化线的研究将扩展到更高的压力。在较低的压力下,氢从分子固体熔化为分子液体。随着熔点以上温度的升高,氢将解离,变成具有金属导电性的单原子。随着超过峰值的压力的增加,熔化温度可能下降到零开尔文,人们可以直接观察到从分子相到原子相的熔化。这种原子金属液体有望表现出双组分超导电性(电子和质子)以及超流性金属氢由于势垒而被预测为亚稳态。两相之间的这种势垒可能是在低温下抑制了固体分子向原子金属转变的原因。在高温下,热能可以使分子相克服势垒,转变为金属氢。这项研究的更广泛影响是开发了在极端条件下研究材料的新方法,丰富了科学界。这个项目涉及各个层次的年轻研究人员--高中、本科生、研究生和博士后,他们将发展成为未来的科学家。70多年前,Wigner和Huntington预测,在高压下,氢将从分子固体转变为原子金属固体,后来被预测为可能的室温超导体(对电流没有阻力),是亚稳定的,即当压力释放时,将保持在金属相中。由于其极端的量子性质,理论在准确预测氢的性质方面受到了挑战,需要实验指导。氢的压力已经超过了预测转变压力的10倍,并且仍然是分子绝缘的。最近的理论预测在熔化线上有一个峰值,当压力超过峰值时,熔化温度可能会下降到零开尔文。氢将是一种原子金属液体,具有电子和质子的超导电性。由于氢在高温下容易扩散出高压装置或进入组成高压装置的材料,早先在极端压力-温度范围内研究氢的尝试失败了。利用一种新开发的脉冲激光加热方法,现在可以在这个区域内研究氢。已经观察到了熔化线中的预测峰值,该研究计划将把研究扩展到更高的压力,以寻找金属状态。在更广泛的层面上,为科学界开发了高压和高温/低温的新技术;如果能够生产金属氢并且是亚稳定的,它将是一种高能量密度的材料,也是人类可用的最强大的火箭推进剂。各级学生和博士后研究员,即下一代科学家,都参与了开发和研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isaac Silvera其他文献
A High Pressure Study of Ortho-para Conversion in Hydrogen by NMR
- DOI:
10.1023/a:1022557628828 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:1.400
- 作者:
Michael Pravica;Isaac Silvera - 通讯作者:
Isaac Silvera
Molten under pressure
在压力下熔化
- DOI:
10.1038/nphys1491 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:18.400
- 作者:
Isaac Silvera - 通讯作者:
Isaac Silvera
Isaac Silvera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isaac Silvera', 18)}}的其他基金
Metallic Properties of the Isotopes of Hydrogen
氢同位素的金属性质
- 批准号:
1905943 - 财政年份:2020
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
Ultrahigh Pressure Studies of Hydrogen and its Isotopes
氢及其同位素的超高压研究
- 批准号:
0071828 - 财政年份:2000
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
Gordon Conference: Research at High Pressure, June 25 - 30, 2000, Meriden, NH
戈登会议:高压研究,2000 年 6 月 25 日至 30 日,新罕布什尔州梅里登
- 批准号:
0077814 - 财政年份:2000
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
NMR in a Diamond Anvil Cell, Ruby Fluorescence, and the Ultra-high Pressure Scale
金刚石砧池中的 NMR、红宝石荧光和超高压刻度
- 批准号:
9971326 - 财政年份:1999
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
Ultrahigh Pressure Studies of Hydrogen and Its Isotopes
氢及其同位素的超高压研究
- 批准号:
9701500 - 财政年份:1997
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Development of a Small Helium Liquefier
小型氦液化器的研制
- 批准号:
9400122 - 财政年份:1994
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Fundamental Properties of Solids Under Ultra High Pressure (Materials Research)
超高压下固体的基本性质(材料研究)
- 批准号:
8600955 - 财政年份:1986
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Data Acquisition System For Low Temperature Solid State Physics Research
低温固体物理研究数据采集系统
- 批准号:
8213249 - 财政年份:1983
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
相似国自然基金
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Trial of ultra-multipoint high-precision atmospheric pressure observation for tsunami detection by citizen science
公民科学超多点高精度大气压力观测海啸探测试验
- 批准号:
22K18872 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Scoping the world of ultra-thin film and ultra-high pressure environments
审视超薄膜和超高压环境的世界
- 批准号:
LE220100085 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Development of new processes for manufacturing high-performance thermoelectric materials using ultra-high pressure technology
利用超高压技术开发制造高性能热电材料的新工艺
- 批准号:
22K19076 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Exploring fluid-rock interactions along the subduction interface - The record within (ultra)high-pressure metasediments
探索沿俯冲界面的流体-岩石相互作用 - (超)高压变沉积岩内的记录
- 批准号:
467270146 - 财政年份:2021
- 资助金额:
$ 45.5万 - 项目类别:
Research Grants
Synthesis of novel carbon-rich transition metal carbides by ultra high-pressure synthesis using organometallic compound precursor
利用有机金属化合物前驱体超高压合成新型富碳过渡金属碳化物
- 批准号:
21K18817 - 财政年份:2021
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Fermi surface study under ultra high pressure up to 10 GPa by quantum oscillation effect
利用量子振荡效应在高达 10 GPa 的超高压下进行费米表面研究
- 批准号:
21K03470 - 财政年份:2021
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of electrochemical measurement method under ultra-high pressure and application to battery reaction analysis
超高压电化学测量方法开发及其在电池反应分析中的应用
- 批准号:
21K05258 - 财政年份:2021
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research and development on cooling effect of cutting tool edge and heat dissipation type tool by utilizing ultra-high pressure coolant during interrupted cutting
断续切削时利用超高压冷却液的切削刃及散热型刀具冷却效果研究与开发
- 批准号:
21K03787 - 财政年份:2021
- 资助金额:
$ 45.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
iPPSIS: implanted Passive Pressure Sensor Interrogated with (ultra)-Sound
iPPSIS:植入式无源压力传感器,通过(超)声音询问
- 批准号:
10196310 - 财政年份:2021
- 资助金额:
$ 45.5万 - 项目类别:
I2I Phase 1a application: Ultra-flexible, self-healable and high density pressure sensor array for gait pressure mapping
I2I 1a 阶段应用:超灵活、可自愈、高密度压力传感器阵列,用于步态压力测绘
- 批准号:
566691-2021 - 财政年份:2021
- 资助金额:
$ 45.5万 - 项目类别:
Idea to Innovation