Mirror Principle and Modularity
镜像原理和模块化
基本信息
- 批准号:0072158
- 负责人:
- 金额:$ 7.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0072158Principal Investigator: Bong H. LianThis project addresses problems in three closely related areas inthe context of mirror symmetry and duality. As a continuation ofcurrent joint work with K. Liu and S.T. Yau, Lian proposes toboth generalize and specialize their theory ("mirror principle")for studying characteristic classes of vector bundles on a stablemap moduli space. First, this work has thus far considered convexprojective manifolds. Dropping the convexity assumption isimportant if one wishes to consider general Calabi-Yaumanifolds. Part I of this proposal outlines an approach which isexpected to lead to the full generalization of mirror principlein in genus zero. The main new input here is a way to combine thedifficult machinery of virtual cycles and the many ingredients ofthe mirror principle. Second, the mirror principle can bespecialized to surfaces and many new questions which haverecently arisen in local mirror symmetry, as well as enumerativegeometry on surfaces. In the former case partition functions ofa given genus are related to modular forms whenever theunderlying surface is elliptic. In the latter case, enumeratingcurves of a given genus with suitable incidence in a surface alsoyields modular forms. This project seeks to understand modularityfrom the point of view of characteristic classes of vectorbundles on stable map moduli spaces. For positive genus, themirror principle requires yet another generalization. In Part IIof this project, Hosono, Lian, Liu and Yau will examine these newquestions. In recent joint work of Hosono, Lian and Yau, theyhave settled the problem of constructing the ubiquitous largeradius limit for the "universal" family of Calabi-Yauhypersurfaces in a toric manifold. In Part III Lian, Todorov andYau will study this limit for more general families.String physics is an ambitious effort to unify all thefundamental forces of nature. A remarkable prediction of StringTheory is that nature apparently allows for many differentversions of spacetimes. A major current problem in stringphysics is to understand how a plethora of apparently differentspacetimes are related, often in an unexpected and remarkableways, under the rubric of ``String Duality''. Mirror symmetry isa special yet nontrivial case of String Duality. Though they comein vast variety, the spacetimes in questions are still highlyrestricted. They turn out to be a class of geometrical objects,known as Calabi-Yau manifolds, which have been studied bymathematicians for over 100 years. Physicists have discoveredthat string theories associated to certain pairs of Calabi-Yaumanifolds ("mirror pairs") are equivalent. This project aims atunderstanding the geometry of these mirror manifolds from themathematical point of view. A constant exchange of insights andfeedback between physicists and mathematicians on mirror symmetryand other issues has been a hallmark of String Theory in its last20 years of development.
摘要奖:DMS-0072158主要研究者:Bong H.这个项目在镜像对称和二元性的背景下解决了三个密切相关的领域的问题。作为目前与K. Liu和S.T. Yau,Lian提出了推广和专门研究稳定映射模空间上向量丛特征类的理论(“镜像原理”)。首先,这项工作迄今认为凸射影流形。 如果要考虑一般的Calabi-Yaumanifolds,则放弃凸性假设是重要的。本建议的第一部分概述了一种方法,有望导致镜像原理在亏格零中的全面推广。这里主要的新输入是一种将虚拟循环的困难机械和镜像原理的许多成分联合收割机结合起来的方法。第二,镜像原理可以专门应用于曲面和最近在局部镜像对称性中出现的许多新问题,以及曲面上的计数几何。 在前一种情况下,当下垫面是椭圆形时,给定亏格的配分函数与模形式有关.在后一种情况下,在曲面中以适当的关联度枚举给定亏格的曲线也会产生模形式。这个项目试图从稳定映射模空间上向量束的特征类的角度来理解模性。对于正亏格,镜像原理还需要另一种推广。 在这个项目的第二部分,细野,连,刘和丘将研究这些新问题。Hosono,Lian和Yau在最近的联合工作中,解决了复曲面流形中“万有”Calabi-Yau超曲面族的普遍大半径极限的构造问题.在第三部分,Lian、Todorov和Yau将研究更一般的族的极限。弦物理是一项雄心勃勃的努力,旨在统一自然界所有的基本力。弦论的一个显著预言是,自然界显然允许许多不同版本的时空。 弦物理学目前的一个主要问题是理解在“弦对偶”的标题下,过多的明显不同的时空是如何联系在一起的,通常是以一种意想不到的和可解释的方式。镜像对称伊萨弦对偶的一种特殊而又非平凡的情形。尽管它们种类繁多,但问题中的时空仍然是高度受限的。 它们原来是一类几何对象,被称为卡-丘流形,数学家已经研究了100多年。 物理学家已经发现,与某些卡拉比-姚曼折叠对(“镜像对”)相关的弦理论是等价的。 本项目旨在从数学的角度理解这些镜像流形的几何。 物理学家和数学家在镜像对称和其他问题上不断交换见解和反馈,这是弦理论在过去20年发展中的一个标志。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bong Lian其他文献
Bott多様体のコホモロジー剛性問題
Bott 流形的上同调刚度问题
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Shinobu Hosono;Bong Lian;Hiromichi Takagi;S.-T. Yau;Hiroshi Iritani;石田 裕昭 - 通讯作者:
石田 裕昭
Bong Lian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bong Lian', 18)}}的其他基金
FRG: Collaborative Research: Generalized Geometry, String Theory and Deformations
FRG:协作研究:广义几何、弦理论和变形
- 批准号:
1159049 - 财政年份:2012
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
相似海外基金
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
- 批准号:
24K04051 - 财政年份:2024
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study for reformation of the hearsay exceptions based on the best evidence principle
基于最佳证据原则的传闻证据例外改革研究
- 批准号:
23K01149 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scientific principle construction of two-dimensional liquid with broken inversion symmetry
反演对称性破缺二维液体的科学原理构建
- 批准号:
23K17366 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
- 批准号:
23K17776 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Fault Principle: Foundations and Content
过错原则:基础和内容
- 批准号:
23KJ1551 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
- 批准号:
2247709 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
The impact of China's "ecological civilisation" principle on China's management of transboundary rivers in the region.
中国“生态文明”原则对中国跨界河流管理的影响。
- 批准号:
2886776 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Studentship
Simulation studies of the interaction between turbulent and neoclassical transport in three-dimensional magnetic plasma based on the global first principle model
基于全局第一性原理模型的三维磁等离子体中湍流与新古典输运相互作用的模拟研究
- 批准号:
23K03364 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and auto assembly of robot module by design principle of stacking and high-density arrangement
利用堆叠高密度排列的设计原理进行机器人模块的开发与自动装配
- 批准号:
23K03771 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)