Some Mesoscale Issues for Applied Mathematics
应用数学的一些介尺度问题
基本信息
- 批准号:0072194
- 负责人:
- 金额:$ 19.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mesoscale is a term intended to convey an intermediate level description ofa physical system. Its function is to capture the interactions of thesystem at finer scales with interactions or influences from larger coarserscales, and the mesoscale level itself. Such systems, active acrossdisparate length and time scales, are inherently metastable. This featureis often revealed by hysteretic behavior or by a reluctance to evolvequickly to equilibrium. The focus in this proposal is on severalprototypes of these systems that occur in materials sceince. One is the role of interfaces, or grain boundaries, in determining or limiting the behavior of polycrystalline materials. The energy and mobility of grain boundaries depends on crystallography and geometry, according to established thermodynamic principles. Innovative new ways to determine these functions explicitly for important materials are the objective of the Mesoscale Interface Mapping Project. This involves developing automated microscopy to harvest large amounts of data from samples and then formulating and solving a complex inverse problem. One way to approach determination of mobility consists in the development of large scale simulations of grain boundary evolution. The second focus is the coarse grained descriptions of mesoscale systems, the functional analytic limit processes in the microstructure of solids or the averaging to distribution functions in systems with stochastic behavior. The new methods allow study of situations where kinetics arise directly in terms of thermodynamic state functions and naturally carry with them an appropriate topology. The issue of metastability has been under investigation in this context. There is now the opportunity to improve understanding, for example, of microstructural evolution in shape-memory materials and diffusion mediated transport in certain liquid crystal systems and in protein motors. This will include diagnostics for these systems.The challenge of the mesoscale in materials science is to understand how it constrains finer scale systems (at the molecular scale) and determines larger scale systems (at the scale of entire devices). This is accomplishedthrough coarse graining procedures. For example, many technologicallyuseful materials are polycrystalline, or granular, in nature. The aluminumskin of an aircraft and the copper or copper-aluminum interconnects incomputer chips are but two examples at vastly different size scales of suchgranular materials. It is widely understood that many aspects of thesematerials depend on the interfaces they contain, or their grain boundaries.Properties of grain boundaries determine the reliability as well as the mechanical strength. This project will exploit the exciting opportunities and challenges for mathematical science in this field and beyond. Specifically, coarse graining methods will be developed in order to better understand phenomena that occur in protein motors and in liquid crystals. A related problem of coarse graining arises when information is to be extracted from the immense amounts of data that can be produced with simulations ofcomplex systems, such as polycrystalline materials. This problem of coarse graining at an information scale rather than a physical scale will also be addressed in this project.
中尺度是一个术语,旨在传达一个物理系统的中间水平的描述。 它的功能是捕捉的相互作用,在更细的尺度与相互作用或影响,从更大的coarserscales,和中尺度水平本身。 这样的系统,活跃在不同的长度和时间尺度上,本质上是亚稳态的。 这一特征通常表现为滞后行为或不愿迅速发展到平衡状态。 本提案的重点是材料科学中出现的这些系统的几个原型。 一个是界面或晶界在决定或限制多晶材料行为中的作用。根据已建立的热力学原理,晶界的能量和流动性取决于晶体学和几何形状。 中尺度界面测绘项目的目标是明确确定重要材料的这些功能的创新方法。 这涉及开发自动显微镜,从样品中收集大量数据,然后制定和解决复杂的逆问题。 一种方法来接近确定的流动性包括在大规模模拟晶界演变的发展。 第二个重点是粗粒度的描述中尺度系统,功能分析的极限过程中的微观结构的固体或平均系统中的随机行为的分布函数。新的方法允许研究的情况下,动力学直接出现在热力学状态函数和自然进行与他们适当的拓扑结构。 亚稳态问题一直在这方面的调查。 现在有机会提高理解,例如,在形状记忆材料和扩散介导的运输在某些液晶系统和蛋白质马达的微观结构的演变。 这将包括这些系统的诊断。材料科学中的中尺度的挑战是了解它如何约束更精细的尺度系统(在分子尺度上)和确定更大尺度的系统(在整个设备的尺度上)。 这是通过粗粒化程序进行的。 例如,许多技术上有用的材料本质上是多晶的或颗粒状的。 飞机的铝外壳和计算机芯片中的铜或铜-铝互连只是这种颗粒材料在尺寸尺度上差异很大的两个例子。 人们普遍认为,这些材料的许多方面都取决于它们所包含的界面或晶界,晶界的性质决定了材料的可靠性和机械强度。该项目将利用数学科学在这一领域和超越令人兴奋的机遇和挑战。 具体而言,将开发粗粒化方法,以更好地理解蛋白质马达和液晶中发生的现象。 一个相关的粗粒化问题出现时,信息是从大量的数据,可以产生与模拟的复杂系统,如多晶材料。这个问题的粗粒化在一个信息规模,而不是一个物理规模也将在这个项目中解决。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kinderlehrer其他文献
The partially supported elastic beam
- DOI:
10.1007/bf00041315 - 发表时间:
1983-05-01 - 期刊:
- 影响因子:1.400
- 作者:
Fabio Gastaldi;David Kinderlehrer - 通讯作者:
David Kinderlehrer
The coincidence set of solutions of certain variational inequalities
- DOI:
10.1007/bf00281484 - 发表时间:
1971-01-01 - 期刊:
- 影响因子:2.400
- 作者:
David Kinderlehrer - 通讯作者:
David Kinderlehrer
Some open questions about variational inequalities
- DOI:
10.1007/bf02760234 - 发表时间:
1972-03-01 - 期刊:
- 影响因子:0.800
- 作者:
David Kinderlehrer - 通讯作者:
David Kinderlehrer
Energy functional depending on elastic strain and chemical composition
- DOI:
10.1007/bf01235532 - 发表时间:
1994-08-01 - 期刊:
- 影响因子:2.000
- 作者:
Irene Fonseca;David Kinderlehrer;Pablo Pedregal - 通讯作者:
Pablo Pedregal
Added dimensions to grain growth
添加了晶粒生长的维度
- DOI:
10.1038/446995a - 发表时间:
2007-04-25 - 期刊:
- 影响因子:48.500
- 作者:
David Kinderlehrer - 通讯作者:
David Kinderlehrer
David Kinderlehrer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kinderlehrer', 18)}}的其他基金
Some mesoscale issues for applied mathematics
应用数学的一些介尺度问题
- 批准号:
0806703 - 财政年份:2008
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Some Mesoscale Issues in Applied Mathematics
应用数学中的一些介尺度问题
- 批准号:
0305794 - 财政年份:2003
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
Acquisition of Computer Equipment for Development of Algorithms for Scientific Computing
购置计算机设备以开发科学计算算法
- 批准号:
9512142 - 财政年份:1995
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Sciences; Transitions and Defects in Ordered Materials
合作研究:数学科学;
- 批准号:
9505078 - 财政年份:1995
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
Transitions and Defects in Ordered Materials: Nonlinear Theory, Computation, and Equipment
有序材料中的转变和缺陷:非线性理论、计算和设备
- 批准号:
8718881 - 财政年份:1988
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Constrained Problems in the Calculus of Variations
数学科学:变分法中的约束问题
- 批准号:
8706782 - 财政年份:1987
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Variational Methods in Mathematical Analysis
数学科学:数学分析中的变分方法
- 批准号:
8301345 - 财政年份:1983
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
Free Boundary Problems, Variational Inequalities, and Related Topics
自由边界问题、变分不等式及相关主题
- 批准号:
8023354 - 财政年份:1981
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Free Boundary Problems, Variational Inequalities, and Related Topics
自由边界问题、变分不等式及相关主题
- 批准号:
7722983 - 财政年份:1977
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
Variational Inequalities of Partial Differential Equations
偏微分方程的变分不等式
- 批准号:
7506489 - 财政年份:1975
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
相似海外基金
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
- 批准号:
2334171 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
Patterning Mesoscale Chirality by Guided Crystal Twisting
通过引导晶体扭曲形成中尺度手性图案
- 批准号:
2325911 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Fellowship
CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
- 批准号:
2340174 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Thermospheric Circulation Using Mesoscale-Resolving Whole Atmosphere Model and Satellite Observations
使用中尺度解析整个大气模型和卫星观测的热层环流
- 批准号:
2409172 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Collaborative Research: Mesoscale Predictability Across Climate Regimes
合作研究:跨气候机制的中尺度可预测性
- 批准号:
2312316 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Characterising and improving understanding of mesoscale convective systems over south-east Asia using machine learning
使用机器学习表征和提高对东南亚中尺度对流系统的理解
- 批准号:
2886050 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Studentship
Collaborative Research: Mesoscale Predictability Across Climate Regimes
合作研究:跨气候机制的中尺度可预测性
- 批准号:
2312315 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Understanding the Role of Mesoscale Atmosphere-Ocean Interactions in Seasonal-to-Decadal Climate Prediction
了解中尺度大气-海洋相互作用在季节到十年气候预测中的作用
- 批准号:
2231237 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant