The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies

中尺度可逆生物分子组装的生物物理学

基本信息

  • 批准号:
    EP/Y000501/1
  • 负责人:
  • 金额:
    $ 257.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Understanding how cells in biology really work can help us to find out what happens when cells go wrong, for example in diseases, and what we can then do to minimise or even prevent these problems from occurring, such as developing new drugs. To do this requires a high level of new insight at the level of the biomolecules involved in such structures, enabled through advanced experimental technologies developed from the physical sciences to probe these structures in cells, as well as complex theoretical methods to really understand how these structures form through interacting with other biomolecules and the environment inside the cell. In this fellowship, I aim to investigate fascinating and remarkable liquid droplets in bacteria called aggresomes that, from our early promising research, we now know form in response to a range of stress conditions imposed on cells, and help them to survive harsh conditions such as are imposed. It is only in the past decade that we have become aware of how ubiquitous and important biomolecular liquid droplets are to a wide range of cell processes. Such droplets form through a phenomenon known as phase separation, similar to the process that occurs when water vapour condenses to form water liquid, but the physical rules that govern how biomolecular liquid droplets form in cells are much more complex than non-biological processes and much is not unknown about these driving physical mechanisms. Here, I aim to develop and use new types of experimental technology and theoretical modelling to determine what the physical rules are that underpin the formation of bacterial aggresomes, and the role in this process played by the cell environment. I aim to use these physical rules to establish how to "tune" the conditions of aggresome formation to enable selective enrichment of specific biomolecules into aggresomes, since this will enable an ambitious opportunity to use aggresomes to act as purification vessels for these selected components. I will capitalise on these insights in the later stages of the project by applying selective enrichment to engineer aggresomes that contain a high content of a recombinant therapeutic biomolecule, with a view to making early progress in scaling up methods for industrial-level production to substantially improve the method of purification for such complex pharmaceutical products. Such an exciting healthcare technology development may have wide ranging impact for improving the production of a range of recombinant therapeutics used against a range of human diseases and health disorders.This fellowship will enable me to build on what I have been working towards since becoming an independent academic for two decades: changing our perception of what we can detect and quantify using advanced new home-built technologies focused around light microscopy, and opening up new inroads in improved healthcare technology. Bridging the physical and life sciences communities, as I am uniquely placed to do, I will use this fellowship to cement my position as a global leader in the physics of life, allowing me to extend my vision to the next generation of physics of life researchers, seeding a northern UK powerhouse of excellence in a key emerging area of biomolecular phase separation research that will benefit both the academic research community and the national economy, helping to create new jobs and ultimately helping to elevate the nation's problems of healthcare in an increasingly aging population through the development of better, more efficient, and ultimately cheaper drug manufacturing methods.
了解细胞在生物学中是如何工作的,可以帮助我们发现当细胞出错时会发生什么,例如在疾病中,以及我们可以做些什么来最大限度地减少甚至防止这些问题的发生,例如开发新药。要做到这一点,需要在这些结构中涉及的生物分子水平上有高水平的新见解,通过物理科学开发的先进实验技术来探测细胞中的这些结构,以及复杂的理论方法来真正了解这些结构如何通过与其他生物分子和细胞内环境相互作用形成。在这个奖学金中,我的目标是研究细菌中迷人而非凡的液滴,称为侵略者,从我们早期有前途的研究中,我们现在知道它是对施加在细胞上的一系列压力条件的反应,并帮助它们在苛刻的条件下生存下来。只是在过去的十年中,我们才意识到生物分子液滴对广泛的细胞过程是多么普遍和重要。这种液滴通过一种称为相分离的现象形成,类似于水蒸气冷凝形成水液体时发生的过程,但控制生物分子液滴如何在细胞中形成的物理规则比非生物过程复杂得多,并且对这些驱动物理机制知之甚少。在这里,我的目标是开发和使用新型的实验技术和理论建模,以确定支持细菌侵袭体形成的物理规则是什么,以及细胞环境在这一过程中所起的作用。我的目标是使用这些物理规则来建立如何“调整”侵略者形成的条件,以使特定的生物分子选择性富集到侵略者中,因为这将使一个雄心勃勃的机会,使用侵略者作为这些选定的成分的纯化容器。我将在该项目的后期阶段利用这些见解,通过选择性富集来工程化含有高含量重组治疗性生物分子的侵袭体,以期在扩大工业水平生产的方法方面取得早期进展,以大幅改善这种复杂药物产品的纯化方法。这样一个令人兴奋的医疗保健技术的发展可能会产生广泛的影响,以改善生产的一系列重组疗法用于对一系列人类疾病和健康障碍。这个奖学金将使我能够建立我一直在努力,因为我成为一个独立的学术二十年:改变了我们对使用先进的新自制技术可以检测和量化的看法,这些技术主要集中在光学显微镜上,并在改善医疗保健技术方面开辟了新的进展。作为物理和生命科学界的桥梁,我将利用这一奖学金巩固我作为生命物理学全球领导者的地位,使我能够将我的视野扩展到下一代生命物理学研究人员,在生物分子相分离研究的一个关键新兴领域,为英国北方的卓越动力所播种,这将使学术研究界和通过开发更好、更有效、最终更便宜的药物制造方法,帮助创造新的就业机会,并最终帮助提高国家在日益老龄化的人口中的医疗保健问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Leake其他文献

Stoichiometry of Active DNA Replication Machinery Within Living Escherichia Coli Cells
  • DOI:
    10.1016/j.bpj.2009.12.3312
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Sherratt;Rodrigo Reyes-Lamothe;Mark Leake
  • 通讯作者:
    Mark Leake
Dynamics and Co-Localization of the Electron Transport Chain of Escherichia Coli: Investigations Through Fluorescence Microscopy
  • DOI:
    10.1016/j.bpj.2009.12.1265
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alex Robson;Mark Leake
  • 通讯作者:
    Mark Leake

Mark Leake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Leake', 18)}}的其他基金

The York Physics of Pyrenoids Project (YP3): Nanostructured Biological LLPS:Next-Level-Complexity Physics of CO2-fixing Organelles
约克核糖体物理学项目 (YP3):纳米结构生物 LLPS:二氧化碳固定细胞器的新水平复杂性物理学
  • 批准号:
    EP/W024063/1
  • 财政年份:
    2022
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant
How bacteria replicate their DNA in spite of barriers, one molecule at a time
细菌如何克服障碍,一次复制一个分子的 DNA
  • 批准号:
    BB/W000555/1
  • 财政年份:
    2021
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant
Physics of Life Network+ (PoLNet3)
生命物理网络 (PoLNet3)
  • 批准号:
    EP/T022000/1
  • 财政年份:
    2020
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant
Biological physics of protein clustering in epigenetic memory and transcriptional control
表观遗传记忆和转录控制中蛋白质聚类的生物物理学
  • 批准号:
    EP/T002166/1
  • 财政年份:
    2019
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant
Tackling tricky twists - how does DNA gyrase function inside living cells?
解决棘手的问题——DNA 旋转酶在活细胞内如何发挥作用?
  • 批准号:
    BB/R001235/1
  • 财政年份:
    2018
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant
Pushing proteins off DNA - how do helicases unwind protein-coated DNA?
将蛋白质从 DNA 上推开 - 解旋酶如何解开蛋白质包被的 DNA?
  • 批准号:
    BB/P000746/1
  • 财政年份:
    2017
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant
Replication repair in real life: analysing how broken DNA replication machines are rebuilt inside cells.
现实生活中的复制修复:分析细胞内受损的 DNA 复制机器如何重建。
  • 批准号:
    BB/N006453/1
  • 财政年份:
    2016
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant
Advanced multidimensional optics to investigate biological complexity at the single-molecule level in living, functional cells
先进的多维光学技术可在活的功能细胞的单分子水平上研究生物复杂性
  • 批准号:
    EP/G061009/1
  • 财政年份:
    2009
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant

相似海外基金

Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Continuing Grant
Patterning Mesoscale Chirality by Guided Crystal Twisting
通过引导晶体扭曲形成中尺度手性图案
  • 批准号:
    2325911
  • 财政年份:
    2024
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Standard Grant
CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
  • 批准号:
    2340174
  • 财政年份:
    2024
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Standard Grant
Thermospheric Circulation Using Mesoscale-Resolving Whole Atmosphere Model and Satellite Observations
使用中尺度解析整个大气模型和卫星观测的热层环流
  • 批准号:
    2409172
  • 财政年份:
    2024
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
  • 批准号:
    2425965
  • 财政年份:
    2024
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Mesoscale Predictability Across Climate Regimes
合作研究:跨气候机制的中尺度可预测性
  • 批准号:
    2312316
  • 财政年份:
    2023
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Standard Grant
Characterising and improving understanding of mesoscale convective systems over south-east Asia using machine learning
使用机器学习表征和提高对东南亚中尺度对流系统的理解
  • 批准号:
    2886050
  • 财政年份:
    2023
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Studentship
Collaborative Research: Mesoscale Predictability Across Climate Regimes
合作研究:跨气候机制的中尺度可预测性
  • 批准号:
    2312315
  • 财政年份:
    2023
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Standard Grant
Understanding the Role of Mesoscale Atmosphere-Ocean Interactions in Seasonal-to-Decadal Climate Prediction
了解中尺度大气-海洋相互作用在季节到十年气候预测中的作用
  • 批准号:
    2231237
  • 财政年份:
    2023
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Continuing Grant
UK Consortium on Mesoscale Engineering Sciences (UKCOMES)
英国中尺度工程科学联盟 (UKCOMES)
  • 批准号:
    EP/X035875/1
  • 财政年份:
    2023
  • 资助金额:
    $ 257.65万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了