Foliated Rigidity and Dynamics of Space-Time

叶状刚度和时空动力学

基本信息

  • 批准号:
    0072165
  • 负责人:
  • 金额:
    $ 6.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-0072165PI Scot AdamsThe study of Lorentz manifolds may be motivated by physicalconsiderations, since the Einstein field equations determine Lorentzmetrics on space-time. Following F.~Klein's Erlanger program, onemethod of approaching a geometric object is to study its group ofisometries, and it has long been known that the isometry group of aLorentz manifold is a Lie group. Moreover, any Lie group acts onitself (by left translation) preserving any left-invariant Lorentzmetric. However, as originally noticed by R.~Zimmer, M.~Gromov, andN.~Kowalsky, if one requires even a small amount of complication tothe dynamics, then the list of Lie groups admitting a Lorentz actionbecomes quite restricted. My work over the last few years has focusedon quantifying exactly which connected Lie groups admit a complicatedaction by isometries of a connected Lorentz manifold. As thedefinition of ``complicated'' varies, the answer varies, and I intendto look at a few more of these variations over the coming years. Inparticular, I would like to determine the collection of connected,noncompact, simple Lie groups admitting a locally faithful, nontame,isometric action on a connected Lorentz manifold. I believe it shouldbe true that any such group either has infinite center or is locallyisomorphic to the Lie group of 2 by 2 real unimodular matrices.A Lorentz manifold, or ``space-time'' is one of the basic object ofgeneral relativity. Some of these objects have many symmetries, whilemost have none at all. Fix a space-time having a large collection ofsymmetries. For any point in this space-time, if we move it around byall the symmetries under consideration, the collection of image pointsso obtained is called the ``orbit'' of the point. A number ofresearchers have noticed that it is difficult to construct aspace-time with chaotic orbits, by which we mean, broadly speaking,that some orbits repeatedly return (or nearly return) to thesame place. There are, in fact, many ways to define precisely the wordchaotic, and this means that a number of different theorems have beenobtained. I intend to continue developing results along these lines.
scott adams对洛伦兹流形的研究可能是出于物理考虑,因为爱因斯坦场方程决定了时空上的洛伦兹度量。根据F.~Klein的Erlanger程序,研究几何物体的等距群是一种方法,而人们早就知道阿仑兹流形的等距群是李群。此外,任何李群作用于自身(通过左平移)保持任何左不变洛伦兹度规。然而,正如最初由R.~Zimmer, M.~Gromov和n。~Kowalsky,如果人们对动力学要求哪怕是一点点的复杂性,那么承认洛伦兹作用的李群的列表就会变得相当有限。在过去的几年里,我的工作一直集中在量化哪些连接李群通过连接洛伦兹流形的等长来承认复杂的作用。由于“复杂”的定义不同,答案也不同,我打算在未来几年研究更多的这些变化。特别地,我想确定在连通的洛伦兹流形上存在局部忠实的、非驯服的、等距作用的连通的、非紧致的、简单李群的集合。我相信它应该是真的,任何这样的群要么有无限的中心,要么局部同构于李群的2 × 2实非模矩阵。洛伦兹流形或“时空”是广义相对论的基本对象之一。其中一些物体具有许多对称性,而大多数物体根本没有对称性。修复一个具有大量对称性的时空。对于这个时空中的任何一点,如果我们按照所考虑的所有对称性移动它,那么得到的图像点的集合称为该点的“轨道”。许多研究人员已经注意到,用混沌轨道构造时空是很困难的,混沌轨道的意思是,广义地说,一些轨道反复返回(或几乎返回)同一地点。事实上,有许多方法可以精确地定义混沌这个词,这意味着已经得到了许多不同的定理。我打算沿着这条路线继续取得成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scot Adams其他文献

Isometric actions of SLn(ℝ) ⋉ ℝn on Lorentz manifolds
  • DOI:
    10.1007/bf02802498
  • 发表时间:
    2001-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Scot Adams;Garrett Stuck
  • 通讯作者:
    Garrett Stuck
Representation varieties of arithmetic groups and polynomial periodicity of Betti numbers
  • DOI:
    10.1007/bf02937507
  • 发表时间:
    1994-10-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Scot Adams
  • 通讯作者:
    Scot Adams
Very weak Bernoulli for amenable groups
  • DOI:
    10.1007/bf02808055
  • 发表时间:
    1992-10-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Scot Adams
  • 通讯作者:
    Scot Adams
Amenability, Kazhdan’s property and percolation for trees, groups and equivalence relations
  • DOI:
    10.1007/bf02776032
  • 发表时间:
    1991-10-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Scot Adams;Russell Lyons
  • 通讯作者:
    Russell Lyons
Induction of Geometric Actions
  • DOI:
    10.1023/a:1013191613349
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Scot Adams
  • 通讯作者:
    Scot Adams

Scot Adams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scot Adams', 18)}}的其他基金

NSF/CBMS Regional Conference in the Mathematical Sciences on Ergodic Theory, Groups and Geometry, June 22-26, 1998, to be held at the University of Minnesota
NSF/CBMS 关于遍历理论、群和几何的数学科学区域会议,1998 年 6 月 22-26 日,将在明尼苏达大学举行
  • 批准号:
    9714067
  • 财政年份:
    1998
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
The Dynamics of Space-Time
时空动力学
  • 批准号:
    9703480
  • 财政年份:
    1997
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Foliated Metric Rigidity Theory
数学科学:叶状度量刚性理论
  • 批准号:
    9403527
  • 财政年份:
    1994
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9007248
  • 财政年份:
    1990
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Fellowship Award

相似海外基金

Flexibility and Rigidity in Dynamics and Geometry
动力学和几何中的灵活性和刚性
  • 批准号:
    2247230
  • 财政年份:
    2023
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Rigidity in Dynamics and Geometry
动力学和几何中的刚性
  • 批准号:
    2246556
  • 财政年份:
    2022
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Continuing Grant
Rigidity in Dynamics and Geometry
动力学和几何中的刚性
  • 批准号:
    2208430
  • 财政年份:
    2022
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Continuing Grant
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
  • 批准号:
    RGPIN-2018-04426
  • 财政年份:
    2022
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
  • 批准号:
    RGPIN-2018-04426
  • 财政年份:
    2021
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity Properties in Dynamics and Geometry
动力学和几何中的刚性特性
  • 批准号:
    2003712
  • 财政年份:
    2020
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
  • 批准号:
    RGPIN-2018-04426
  • 财政年份:
    2020
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity in Rank One Hyperbolic Dynamics and Related Topics
一阶双曲动力学中的刚性及相关主题
  • 批准号:
    1955564
  • 财政年份:
    2020
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Rigidity, Universality, and Complexity in Dynamics
动力学的刚性、普遍性和复杂性
  • 批准号:
    RGPIN-2018-04426
  • 财政年份:
    2019
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of neural transitory dynamics behind cognitive rigidity in autism and intervention with dynamic brain stimulation methods
自闭症认知僵化背后的神经短暂动力学研究及动态脑刺激方法干预
  • 批准号:
    19H03535
  • 财政年份:
    2019
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了