Rigidity Properties in Dynamics and Geometry

动力学和几何中的刚性特性

基本信息

项目摘要

Dynamical systems and ergodic theory investigate the evolution of physical, biological or mathematical systems in time, such as turbulence in a fluid flow, changing planetary systems or the evolution of diseases. Fundamental ideas and concepts such as information, entropy, chaos and fractals have had a profound impact on our understanding of the world. Dynamical systems and ergodic theory have developed superb tools, and have a strong impact on the sciences and engineering. Symbolic dynamics for example has been instrumental in developing efficient and safe codes for computer science. Tools and ideas from smooth dynamics are used as far afield as cell biology and meteorology. Geometry is a highly developed, ancient yet superbly active field in mathematics. It studies curves, surfaces and their higher dimensional analogues, their shapes, shortest paths, and maps between such spaces. Surveying the land for his principality, Gauss also developed the fundamental notions of geodesics and curvature, laying the groundwork for modern differential geometry. It has close links with physics and applied areas like computer vision. Geometry and dynamics are closely connected. Indeed, important dynamical systems such as the geodesic flow come from geometry, and vice versa one can use geometric tools to study dynamics. One main goal of this project studies symmetries of dynamical systems, especially when one system is unaffected by the changes brought on by the other. The quest is to study these systems via unexpected symmetries. Important examples arise from geometry when the space contains many flat subspaces. Finally group theory gets introduced in both dynamics and geometry via the group of symmetries of a geometry or dynamical situation. The principal investigator will continue training a new generation of researchers and mathematicians, and students at all levels in their mathematical endeavor. This project includes support for research training opportunities for graduate students and summer research experiences for undergraduates.This project will investigate rigidity phenomena in geometry and dynamics, especially actions of higher rank abelian and semi-simple Lie groups and their lattices. The latter is part of the Zimmer program. Particular emphasis will be put on hyperbolic actions of such groups. As higher rank semisimple Lie groups and their lattices contain higher rank abelian groups, the classification and rigidity problems for the abelian and semi-simple cases are closely related, with abundant cross fertilization. The goal is the classification of such actions. Closely related are the study of automorphism groups of geometric structures. Investigations in geometry will address higher rank Riemannian manifolds and their classification, introducing novel methods. The dynamics of geodesic and frame flows will also be studied, with investigations of discrete subgroups of Lie groups for rank rigidity and measure properties. Besides establishing new results, the principal investigator also strives to find and introduce novel methods for investigating these problems which will lend themselves to applications in other areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统和遍历理论研究物理,生物或数学系统在时间上的演变,例如流体流动中的湍流,改变行星系统或疾病的演变。 信息、熵、混沌和分形等基本思想和概念对我们对世界的理解产生了深远的影响。 动力系统和遍历理论已经发展了极好的工具,并对科学和工程产生了强烈的影响。 例如,符号动力学在为计算机科学开发高效和安全的代码方面发挥了重要作用。光滑动力学的工具和思想被广泛应用于细胞生物学和气象学。 几何学是数学中一个高度发展、古老而又极其活跃的领域。 它研究曲线,曲面及其高维类似物,它们的形状,最短路径以及这些空间之间的映射。在为公国测量土地的过程中,高斯还发展了测地线和曲率的基本概念,为现代微分几何奠定了基础。 它与物理学和计算机视觉等应用领域有着密切的联系。 几何学和动力学是紧密相连的。 事实上,重要的动力系统,如测地线流来自几何,反之亦然,人们可以使用几何工具来研究动力学。 该项目的一个主要目标是研究动力系统的对称性,特别是当一个系统不受另一个系统所带来的变化的影响时。 我们的目标是通过意想不到的对称性来研究这些系统。 当空间包含许多平坦子空间时,几何学中出现了重要的例子。 最后,群论通过几何或动力学情形的对称群被引入到动力学和几何中。 首席研究员将继续培养新一代的研究人员和数学家,以及各级学生的数学奋进。 本项目将研究几何学和动力学中的刚性现象,特别是高阶阿贝尔群和半单李群及其格的作用,并将研究它们的性质,包括研究生的研究培训机会和本科生的暑期研究经验。后者是Zimmer计划的一部分。 特别强调将放在双曲行动等群体。 由于高阶半单李群及其格包含高阶交换群,因此交换群和半单李群的分类问题和刚性问题密切相关,并存在着大量的交叉作用。 目标是对这些行动进行分类。 密切相关的是研究自同构群的几何结构。 几何学的研究将解决高阶黎曼流形及其分类,引入新的方法。 测地线和框架流的动力学也将进行研究,调查李群的离散子群的秩刚度和措施的性质。 除了建立新的研究成果外,主要研究者还致力于发现和介绍研究这些问题的新方法,这些方法将适用于其他领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carnot metrics, dynamics and local rigidity
卡诺度量、动力学和局部刚性
  • DOI:
    10.1017/etds.2021.116
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    CONNELL, CHRIS;NGUYEN, THANG;SPATZIER, RALF
  • 通讯作者:
    SPATZIER, RALF
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralf Spatzier其他文献

Ralf Spatzier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralf Spatzier', 18)}}的其他基金

Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1607260
  • 财政年份:
    2016
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    1307164
  • 财政年份:
    2013
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    1045119
  • 财政年份:
    2011
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Research, Disseminations, and Faculty Development of Inquiry-Based Learning (IBL) Methods in the Teaching and Learning of Mathematics
合作研究:数学教学中探究式学习(IBL)方法的研究、传播和教师发展
  • 批准号:
    0920057
  • 财政年份:
    2009
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0906085
  • 财政年份:
    2009
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
  • 批准号:
    0602191
  • 财政年份:
    2006
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0604857
  • 财政年份:
    2006
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
Inquiry-Based Learning in Mathematics at the University of Michigan
密歇根大学数学探究式学习
  • 批准号:
    0536464
  • 财政年份:
    2006
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
Rigidity Phenomena in Geometry and Dynamics
几何和动力学中的刚性现象
  • 批准号:
    0203735
  • 财政年份:
    2002
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant
Rigidity Phenomena in Differential Geometry and Dynamical Systems
微分几何和动力系统中的刚性现象
  • 批准号:
    9971556
  • 财政年份:
    1999
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Continuing Grant

相似海外基金

Dynamics of high-energy nuclear collisions based on core-corona picture and transport properties of QGP
基于核日冕图和QGP输运特性的高能核碰撞动力学
  • 批准号:
    23K03395
  • 财政年份:
    2023
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Effects of Coupled Wave Power and Plasma Properties on Radiation Belt Dynamics
耦合波功率和等离子体特性对辐射带动力学的影响
  • 批准号:
    NE/X000389/1
  • 财政年份:
    2023
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Research Grant
Water dynamics via quasielastic neutron scattering on mechanical properties of multilevel hierarchical polymeric materials
通过准弹性中子散射的水动力学对多级分层聚合物材料机械性能的影响
  • 批准号:
    23K11712
  • 财政年份:
    2023
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiscale Simulation of Polymer Degradation: From Molecular Dynamics to Macroscopic Properties
聚合物降解的多尺度模拟:从分子动力学到宏观性能
  • 批准号:
    22KJ1543
  • 财政年份:
    2023
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Monitor single-cell dynamics using optically computed phase microscopy in correlation with fluorescence characterization of intracellular properties
使用光学计算相位显微镜监测单细胞动力学与细胞内特性的荧光表征相关
  • 批准号:
    10589414
  • 财政年份:
    2023
  • 资助金额:
    $ 57.1万
  • 项目类别:
HEOM: High entropy oxides: understanding their unique properties and dynamics using machine learning interatomic potentials
HEOM:高熵氧化物:使用机器学习原子间势了解其独特的性质和动力学
  • 批准号:
    EP/X034429/1
  • 财政年份:
    2023
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Fellowship
Elucidation of photo-relaxation dynamics and photophysical properties of cupper(I) multinuclear coordination polymers with thermally activated delayed fluorescence
热激活延迟荧光阐明铜(I)多核配位聚合物的光弛豫动力学和光物理性质
  • 批准号:
    23K04765
  • 财政年份:
    2023
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding Essential Protein Dynamics through the Anharmonic Properties of Thermally Excited Vibrations
通过热激发振动的非简谐特性了解基本蛋白质动力学
  • 批准号:
    10566333
  • 财政年份:
    2023
  • 资助金额:
    $ 57.1万
  • 项目类别:
Analysis of mechanical properties of interfaces by in situ TEM nano-dynamics observations
通过原位 TEM 纳米动力学观察分析界面的机械性能
  • 批准号:
    22H00255
  • 财政年份:
    2022
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: From Silicate Melts Properties to the Dynamics and Evolution of an Early Basal Magma Ocean
合作研究:从硅酸盐熔体特性到早期基底岩浆洋的动力学和演化
  • 批准号:
    2153918
  • 财政年份:
    2022
  • 资助金额:
    $ 57.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了