Density Functional Theory of Noncollinear Magnetic Systems

非共线磁系统的密度泛函理论

基本信息

  • 批准号:
    0073546
  • 负责人:
  • 金额:
    $ 37.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-01 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

This award supports theoretical and computational research on a variety of topics relating to the electronic structure of magnetic materials. Neutron scattering cannot distinguish between a spiral spin density wave (SSDW) and ordinary transverse spin density wave's (SDW) polarized in different directions in different domains. It is relatively easy to calculate noncommensurate SSDW's but not SDW's. This research will attempt to verify the widely held belief that Cr has a SDW ground state by calculating the energy versus wave vector SSDW curves and comparing the energies of the commensurate SSDW and SDW ground states. The SSDW ground state of rare earth europium will also be calculated.Also, full potential frozen spin wave calculations will be done for Fe and Ni. A larger spin stiffness correction is expected to be required to obtain magnon dispersion curves in agreement with experiment in the case of Fe because its spins are more itinerant than those of Ni. Also to be calculated are the magnon dispersion curves of rare earth gadolinium. Calculations indicate FeRh is an itinerant antiferromagnet. Although the frozen spin wave scheme will work for antiferromagnets in principle, it is not obvious that it will work in practice. Assuming that FeRh is not found to have a SSDW ground state, the scheme will be tested for calculating magnon dispersion curves on it.The spin stiffness used is a somewhat ad hoc gradient term added to the LSDA (local spin density approximation), but the LSDA as currently applied to SSDW's is stretched beyond its range of validity. Furthermore, the spin stiffness correction contains an arbitrary multiplicative parameter. Ideas will be pursued for obtaining further improvements in density functional approximations fo rnoncollinear magnetic systems. If successful, some of the calculations made for the spin stiffness density functional will be repeated. Other calculations will be done. For example, and in agreement with experiment, the GGA (generalized gradient approximation) yields a magnetic surface for V(001) whereas the LSDA does not. One experiment finds that a monlayer of V on Ag(001) has no net magnetization whereas another finds it to be ferromagnetic. An LSDA calculation finds an antiferromagnetic ground state. GGA calculations will be performed in the belief that they will result in the ferromagnetic state lying below the antiferromagnetic one, and inspire additional experimental work.%%%This award supports theoretical and computational research on a variety of topics relating to the electronic structure of magnetic materials. Calculations will be done using density functional theory to determine the magnetic properties of a variety of materials. These calculations will be compared with experiment and will assist in resolving issues relating to these important magnetic materials***.
该奖项支持与磁性材料的电子结构有关的各种主题的理论和计算研究。中子散射不能区分螺旋自旋密度波(SSDW)和普通横向自旋密度波(SDW)在不同区域中不同方向的极化。不相称的SDW相对容易计算,但SDW不容易计算。本研究将试图通过计算能量与波矢量的SSDW曲线,并比较相应的SSDW和SDW基态的能量,来验证人们普遍认为的Cr具有SDW基态。计算了稀土铕的SSDW基态。同时,将对Fe和Ni进行全势冻结自旋波计算。由于Fe的自旋比Ni的更不稳定,因此需要更大的自旋刚度修正才能得到与实验相符的磁振子色散曲线。还计算了稀土钆的磁振子色散曲线。计算表明FeRh是一种流动的反铁磁体。虽然冻结自旋波方案原则上适用于反铁磁体,但在实践中是否可行尚不明显。假设没有发现FeRh具有SSDW基态,将对该方案进行测试,以计算其上的磁振子色散曲线。使用的自旋刚度是在LSDA(局部自旋密度近似)中添加的一个特别的梯度项,但是目前应用于SSDW的LSDA超出了其有效范围。此外,自旋刚度修正包含一个任意的乘法参数。我们将寻求进一步改进非共线磁系统的密度泛函近似。如果成功,将重复对自旋刚度密度泛函所做的一些计算。其他的计算将会完成。例如,与实验一致,GGA(广义梯度近似)产生V(001)的磁表面,而LSDA则没有。一个实验发现Ag(001)上的V单层没有净磁化,而另一个实验发现它是铁磁性的。LSDA计算发现了一个反铁磁基态。在进行GGA计算时,人们相信它们将导致铁磁态位于反铁磁态之下,并激发额外的实验工作。该奖项支持与磁性材料的电子结构有关的各种主题的理论和计算研究。计算将使用密度泛函理论来确定各种材料的磁性。这些计算将与实验进行比较,并将有助于解决与这些重要磁性材料有关的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonard Kleinman其他文献

Myxoma blush with contrast echocardiography
  • DOI:
    10.1016/j.ijcard.2012.11.101
  • 发表时间:
    2013-06-05
  • 期刊:
  • 影响因子:
  • 作者:
    Haroon Yousaf;Mona Patel;Bijoy K. Khandheria;Timothy E. Paterick;Leonard Kleinman;Jayant Khitha;Khawaja Afzal Ammar
  • 通讯作者:
    Khawaja Afzal Ammar

Leonard Kleinman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonard Kleinman', 18)}}的其他基金

Theory of Density Functionals and Pseudopotentials and their Application to Condensed Matter Systems
密度泛函和赝势理论及其在凝聚态系统中的应用
  • 批准号:
    9614040
  • 财政年份:
    1996
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Theory of Density Functionals and Pseudopotentials and Their Application to Large Condensed Matter Systems
密度泛函和赝势理论及其在大型凝聚态系统中的应用
  • 批准号:
    9313645
  • 财政年份:
    1993
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Ab Initio Calculations for Solids and Liquids
固体和液体的从头计算
  • 批准号:
    9015222
  • 财政年份:
    1990
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Energy and Electronic and Magnetic Structure of Dimers, Transition Metal Films, and Semiconductor Alloys and Superlattices
二聚体、过渡金属薄膜、半导体合金和超晶格的能量和电子和磁性结构
  • 批准号:
    8718048
  • 财政年份:
    1988
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Binding Energy and Electronic Structure of Dimers, Surfaces and Superlattices (Materials Research)
二聚体、表面和超晶格的结合能和电子结构(材料研究)
  • 批准号:
    8412408
  • 财政年份:
    1984
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Bulk and Surface Electronic Structure of Solids (Materials Research)
固体的块体和表面电子结构(材料研究)
  • 批准号:
    8019518
  • 财政年份:
    1980
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Electronic States at Surfaces of Solids
固体表面的电子态
  • 批准号:
    7721559
  • 财政年份:
    1977
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Bulk and Surface Properties of Solids
固体的体积和表面性质
  • 批准号:
    7302449
  • 财政年份:
    1973
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant

相似国自然基金

高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
  • 批准号:
    EP/Z530657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Research Grant
Density Functional Theory of Electronic Structure
电子结构密度泛函理论
  • 批准号:
    2344734
  • 财政年份:
    2024
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
Development of the pair-density functional theory for superconductors
超导体对密度泛函理论的发展
  • 批准号:
    23K03250
  • 财政年份:
    2023
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
  • 批准号:
    2337902
  • 财政年份:
    2023
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
Exploring Properties of the Inner Crust of Neutron Stars Through Band Theory Calculations Based on Superfluid Density Functional Theory
基于超流体密度泛函理论的能带理论计算探索中子星内壳的性质
  • 批准号:
    23K03410
  • 财政年份:
    2023
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine-Aided General Framework for Fluctuating Dynamic Density Functional Theory (MAGFFDDFT)
波动动态密度泛函理论的机器辅助通用框架 (MAGFFDDFT)
  • 批准号:
    EP/X038645/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Research Grant
Density Functional Theory of Molecular Fragments: Strong Electron Correlation Beyond Density Functional Approximations
分子片段的密度泛函理论:超越密度泛函近似的强电子相关性
  • 批准号:
    2306011
  • 财政年份:
    2023
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Standard Grant
Aiming for Chemical Accuracy in Ground-state Density Functional Theory
追求基态密度泛函理论的化学准确性
  • 批准号:
    2154371
  • 财政年份:
    2022
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
  • 批准号:
    2149082
  • 财政年份:
    2022
  • 资助金额:
    $ 37.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了