Collabrative Research: Sequential Monte Carlo Methods and Their Applications
协作研究:序贯蒙特卡罗方法及其应用
基本信息
- 批准号:0073651
- 负责人:
- 金额:$ 19.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-15 至 2002-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collaborative Research: Sequential Monte Carlo Methods and Their ApplicationsJun Liu, Harvard University Rong Chen, Univ. Illinois at ChicagoXiaodong Wang, Texas A&M UniversityAbstract (Technical):Sequential Monte Carlo (SMC) methodology recently emerged in statistics and engineering fields promises to solve a wide class of nonlinear filtering and optimization problems, opening up new frontiers for cross-fertilization between statistics and many areas of applications. A distinctive feature of SMC is its ability to adapt to the dynamics of the underlying stochastic systems via recursive simulation of the variables involved. Although special forms of SMC date back to 1950s, the general use of the method appeared only recently and its many key properties have yet been well understood. This research group will focus on three major theoretical issues regarding the design of effective SMC-based computational tools and three important application areas, namely, wireless communications, computational biology, and business data analysis. In the theory part, they will study approaches of generating better Monte Carlo samples for tracking system dynamics; investigate roles of resampling which is critical to the effectiveness of SMC; and propose system reconfiguration strategies for more efficient SMC algorithms. In the application part, they plan to design novel signal processing and network control algorithms for wireless multimedia communications; develop better multiple sequence alignment models and SMC-based optimization method for protein structures; and build SMC-based modeling and analysis tools for business data. It is anticipated that the proposed research will culminate in the formulation of novel SMC methodologies and will bring the promise of the SMC paradigm into the practical arena of many emerging applications.Stochastic dynamic systems are routinely used in many application fields such as automatic control, engineering, and finance. The statistical analyses of these systems are crucial. However, except for a few special cases, quantitative analyses of these systems still present major challenges to researchers. Sequential Monte Carlo (SMC) technique recently emerged in the field of statistics and engineering shows a great promise on solving a wide class of nonlinear filtering, prediction, and optimization problems, providing us with many exciting new research opportunities. The name "Monte Carlo" was coined in 1940s by scientists involved in designing atomic bombs and it refers to a technique in which computer is used to simulate and study a complex stochastic system. The technique was named after the famed gambling resort because its procedures incorporate the element of chance. A distinctive feature of SMC is its ability to sequentially simulate the system by considering one variable at a time. The general use of SMC appeared recently and its invasion into many fields of science and engineering has just begun. Researchers including people in this research group have demonstrated that SMC can be successfully adapted to solve chemistry, engineering, and statistical problems. Understanding its theoretical properties and extending the use of SMC to other fields are the main focuses of this project. More specifically, this research group will focuse on three major theoretical issues regarding the design of effective SMC-based computational tools and three important application areas including wireless communications, computational biology, and business data analysis. These applications are not only important by their own merits, but also essential as the test ground for the new theories being developed and as the sources of stimulation for new research directions for SMC. It is anticipated that this research will culminate in the formulation of novel SMC methodologies and will bring the promise of the SMC paradigm into the practical arena of many emerging applications. In particular, this research will bear fruits in the following areas: novel designs of signal processing and network control algorithms for wireless multimedia communications; developments of better algorithms analyzing biological sequence and structure data; and a SMC-based tool for business data analysis and prediction.
合作研究:序贯蒙特卡罗方法及其应用Jun Liu,哈佛大学Rong Chen,伊利诺伊大学芝加哥分校Xiaodong Wang,德克萨斯州A& M大学摘要(技术):序贯蒙特卡罗(SMC)方法最近出现在统计和工程领域,有望解决广泛的非线性滤波和优化问题,为统计和许多应用领域之间的交叉施肥开辟了新的前沿。SMC的一个显着特点是它能够通过递归模拟所涉及的变量来适应底层随机系统的动态。 虽然SMC的特殊形式可以追溯到20世纪50年代,但该方法的普遍使用直到最近才出现,并且其许多关键特性尚未得到很好的理解。 该研究小组将专注于设计有效的基于SMC的计算工具的三个主要理论问题和三个重要应用领域,即无线通信,计算生物学和商业数据分析。 在理论部分,他们将研究生成更好的蒙特卡罗样本跟踪系统动态的方法;研究对SMC有效性至关重要的重新配置的作用;并提出更有效的SMC算法的系统重新配置策略。 在应用部分,他们计划设计新的无线多媒体通信信号处理和网络控制算法;开发更好的多序列比对模型和基于SMC的蛋白质结构优化方法;并建立基于SMC的业务数据建模和分析工具。预计,拟议的研究将最终在制定新的SMC方法,并将带来的承诺SMC范式到实际的竞技场的许多新兴的application.Stochastic动态系统经常使用在许多应用领域,如自动控制,工程和金融。 对这些系统的统计分析至关重要。 然而,除了少数特殊情况下,这些系统的定量分析仍然是研究人员面临的主要挑战。 序列蒙特卡罗(SMC)技术是近年来在统计和工程领域中出现的一种新技术,它在解决非线性滤波、预测和优化等问题方面有着广阔的应用前景,为我们提供了许多新的研究机会。 蒙特卡洛这个名字是在20世纪40年代由参与设计原子弹的科学家创造的,它指的是一种用计算机模拟和研究复杂随机系统的技术。这项技术以著名的赌博胜地命名,因为它的程序包含了机会的元素。SMC的一个显着特点是它能够通过一次考虑一个变量来顺序模拟系统。 SMC的广泛应用是最近才出现的,它对科学和工程的许多领域的入侵才刚刚开始。包括该研究小组成员在内的研究人员已经证明,SMC可以成功地解决化学、工程和统计问题。了解其理论特性并将SMC的应用扩展到其他领域是本项目的主要重点。更具体地说,这个研究小组将集中在三个主要的理论问题,关于设计有效的基于SMC的计算工具和三个重要的应用领域,包括无线通信,计算生物学和商业数据分析。这些应用程序不仅是重要的,因为它们本身的优点,但也是必不可少的,作为新的理论正在开发的测试场,并作为SMC的新的研究方向的刺激源。 预计这项研究将最终在制定新的SMC方法,并将带来的承诺SMC范式到许多新兴应用的实际竞技场。 特别是,这项研究将在以下领域取得成果:无线多媒体通信的信号处理和网络控制算法的新设计;更好的算法分析生物序列和结构数据的发展;和基于SMC的商业数据分析和预测工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Wang其他文献
Understanding the Scheduling Performance in Wireless Networks with Successive Interference Cancellation
了解具有连续干扰消除的无线网络的调度性能
- DOI:
10.1109/tmc.2012.140 - 发表时间:
2013-08 - 期刊:
- 影响因子:7.9
- 作者:
Ming Xu;Xiaodong Wang;Chi Liu;Xingming Zhou - 通讯作者:
Xingming Zhou
Design and fabrication of dual-functional microcapsules containing phase change material core and zirconium oxide shell with fluorescent characteristics
具有荧光特性的相变材料核和氧化锆壳双功能微胶囊的设计与制备
- DOI:
10.1016/j.solmat.2014.10.035 - 发表时间:
2015-02 - 期刊:
- 影响因子:6.9
- 作者:
Ying Zhang;Xiaodong Wang;Dezhen Wu - 通讯作者:
Dezhen Wu
Bio-inspired design of an auxiliary fishbone-shaped cathode flow field pattern for polymer electrolyte membrane fuel cells
聚合物电解质膜燃料电池辅助鱼骨形阴极流场模式的仿生设计
- DOI:
10.1016/j.enconman.2020.113588 - 发表时间:
2021 - 期刊:
- 影响因子:10.4
- 作者:
Yulin Wang;Chao Si;Yanzhou Qin;Xiaodong Wang;Yuanzhi Fan;Yuyao Gao - 通讯作者:
Yuyao Gao
Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control
涡流发生器安装角度对流动分离控制影响的实验与数值分析
- DOI:
10.3390/en12234583 - 发表时间:
2019-12 - 期刊:
- 影响因子:3.2
- 作者:
Xinkai Li;Wei Liu;Tingjun Zhang;Peiming Wang;Xiaodong Wang - 通讯作者:
Xiaodong Wang
Dynamic response analysis for the aero-engine dual-rotor-bearing system with flexible coupling misalignment faults
航空发动机双转子轴承系统弹性联轴器不对中故障动态响应分析
- DOI:
10.21595/jve.2017.18553 - 发表时间:
2018-08 - 期刊:
- 影响因子:1
- 作者:
Zhenyong Lu;Xiaodong Wang;Lei Hou;Yushu Chen;Hongliang Li - 通讯作者:
Hongliang Li
Xiaodong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Wang', 18)}}的其他基金
A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
- 批准号:
2335765 - 财政年份:2024
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Pushing Heterogeneous Catalysis into Biological Chemistry via Cofactor Regeneration
通过辅因子再生将多相催化推向生物化学
- 批准号:
EP/V048635/1 - 财政年份:2021
- 资助金额:
$ 19.51万 - 项目类别:
Research Grant
Collaborative Research: Real-Time Data-Driven Anomaly Detection for Complex Networks
协作研究:复杂网络的实时数据驱动异常检测
- 批准号:
2040500 - 财政年份:2021
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1954549 - 财政年份:2020
- 资助金额:
$ 19.51万 - 项目类别:
Continuing Grant
CIF: Small: Massive MIMO for Massive Machine-Type Communication
CIF:小型:用于大规模机器类型通信的大规模 MIMO
- 批准号:
1814803 - 财政年份:2018
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Communications with Energy Harvesting Nodes
CIF:小型:协作研究:与能量收集节点的通信
- 批准号:
1526215 - 财政年份:2015
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Advanced Signal Processing for Smard Grid and Renewable Energy Sources
适用于智能电网和可再生能源的高级信号处理
- 批准号:
1405327 - 财政年份:2014
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
CIF: Medium Projects: Event-Triggered Sampling: Application to Decentralized Detection and Estimation
CIF:中型项目:事件触发采样:在去中心化检测和估计中的应用
- 批准号:
1064575 - 财政年份:2011
- 资助金额:
$ 19.51万 - 项目类别:
Continuing Grant
CDI Type II/Collaborative Research: A New Approach to the Modeling of Clot Formation and Lysis in Arteries
CDI II 型/合作研究:动脉血栓形成和溶解建模的新方法
- 批准号:
1028112 - 财政年份:2010
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
- 批准号:
10755010 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
- 批准号:
2323113 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
- 批准号:
2303000 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
- 批准号:
2302999 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Verifying and Enforcing Safety Constraints in AI-based Sequential Generation
合作研究:SLES:验证和执行基于人工智能的顺序生成中的安全约束
- 批准号:
2331967 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
- 批准号:
2323112 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Verifying and Enforcing Safety Constraints in AI-based Sequential Generation
合作研究:SLES:验证和执行基于人工智能的顺序生成中的安全约束
- 批准号:
2331966 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Towards Universal Accessibility in Mental Healthcare for Young Canadians: A Sequential Mixed-Methods, Patient-Oriented Research Study.
实现加拿大年轻人心理保健的普遍可及性:一项序贯混合方法、以患者为导向的研究。
- 批准号:
495147 - 财政年份:2023
- 资助金额:
$ 19.51万 - 项目类别:
Collaborative Research: CIF: Small: Sequential Decision Making Under Uncertainty With Submodular Rewards
合作研究:CIF:小:不确定性下的顺序决策与子模奖励
- 批准号:
2149588 - 财政年份:2022
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Sequential Decision Making Under Uncertainty With Submodular Rewards
合作研究:CIF:小:不确定性下的顺序决策与子模奖励
- 批准号:
2149617 - 财政年份:2022
- 资助金额:
$ 19.51万 - 项目类别:
Standard Grant