Advanced Signal Processing for Smard Grid and Renewable Energy Sources
适用于智能电网和可再生能源的高级信号处理
基本信息
- 批准号:1405327
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modernizing the electric power grid has become a major national priority for many countries across the globe. With the increasing penetration of renewable and distributed energy sources along with the necessary means of energy storage technologies, it is envisioned that the so-called "smart grids" will make the production and delivery of electricity more reliable and more cost-effective, and will allow consumers to make more informed decisions about their energy consumption. The smart grid transforms the legacy grid that provides a one-way centrally generated power flow to end users into a more distributed and dynamic system of two-way flow of power and information. The essential concept of the smart grid, where the intelligence will be to a large extent distributed, is the integration of power electronics, real-time metering, digital communications, signal processing, and control technologies into the power system. Communications and information technology play a critical role in the smart grid. As the power grid becomes more complex, more interconnected, and more intelligent, large amount of data will be generated by meters, sensors and synchrophasors. Advanced techniques for managing, analyzing and acting on such data need to be developed. Further, as more and more renewable energy sources, such as photovoltaic (PV) solar arrays and wind turbine arrays are deployed, novel techniques are needed to optimize and monitor the energy generation performance. The numerous technical challenges that accompany the future smart-grid systems call for novel solutions. Hence it is important at this time to perform research that addresses the theoretical aspects of smart grid and renewable energy sources, and to acquire insights and theoretical tools that may help propel significant advances in this field. This project focuses on three major topics that are related to the distributed intelligence for smart grid and renewable energy sources: (1) to develop distributed and secure nonlinear state estimation methods for both power transmission and power distribution grids; (2) to develop decentralized sequential joint change detection and estimation algorithms for real-time detection and mitigation of cyber attacks in smart grid; and (3) to develop decentralized model-free adaptive algorithms for online optimization and monitoring of solar PV arrays, and for controlling of wind turbine arrays, respectively. Smart grid and renewable energy sources bring profound changes to the society and the proposed research will lead to new and powerful techniques for grid state estimation, cyber attack detection and mitigation, and efficient utilization of renewable energy sources. In addition to conducting theoretical analysis, computational procedures will be developed to facilitate the analytical work. The new concepts and algorithms developed under ideal conditions will be tailored to operate in practical systems with various constraints. It is expected that the proposed research will not only enhance our understanding of the fundamental underpinnings of the complex smart-grid systems and renewable energy sources, but also produce new and powerful tools for future electrical power systems. By coordinating with an established outreach program, this project will actively engage K-12 students and traditionally under-represented groups and inspire these students to pursue STEM (science, technology, engineering and mathematics) education and careers.
电网现代化已成为全球许多国家的主要国家优先事项。随着可再生能源和分布式能源的日益普及以及储能技术的必要手段,预计所谓的“智能电网”将使电力的生产和输送更可靠和更具成本效益,并将使消费者能够更明智地决定他们的能源消耗。智能电网将向终端用户提供单向集中发电潮流的传统电网转变为一个更分布式、更动态的电力和信息双向流动系统。智能电网的基本概念是将电力电子、实时计量、数字通信、信号处理和控制技术集成到电力系统中,智能电网的智能在很大程度上将是分布式的。通信和信息技术在智能电网中起着至关重要的作用。随着电网变得更加复杂、互联和智能化,仪表、传感器和同步器将产生大量的数据。需要开发管理、分析和处理此类数据的先进技术。此外,随着越来越多的可再生能源,如光伏(PV)太阳能电池阵列和风力涡轮机阵列的部署,需要新的技术来优化和监测发电性能。伴随着未来智能电网系统的众多技术挑战,需要新的解决方案。因此,目前重要的是开展研究,解决智能电网和可再生能源的理论问题,并获得可能有助于推动该领域重大进展的见解和理论工具。本项目致力于与智能电网和可再生能源的分布式智能相关的三个主要主题:(1)开发用于输电和配电网的分布式和安全的非线性状态估计方法;(2)开发用于实时检测和缓解智能电网中的网络攻击的分散序贯联合变化检测和估计算法;(3)分别开发用于太阳能光伏阵列在线优化和监测的分布式无模型自适应算法和用于风力机阵列控制的分布式无模型自适应算法。智能电网和可再生能源给社会带来了深刻的变化,提出的研究将为电网状态估计、网络攻击检测和缓解以及可再生能源的高效利用带来新的强大技术。除了进行理论分析外,还将开发计算程序以促进分析工作。在理想条件下开发的新概念和算法将被量身定做,以适用于具有各种约束的实际系统。预计拟议的研究不仅将增进我们对复杂智能电网系统和可再生能源的基本基础的了解,而且还将为未来的电力系统提供新的强大工具。通过与既定的外展计划协调,该项目将积极吸引K-12学生和传统上代表性不足的群体,并激励这些学生继续STEM(科学、技术、工程和数学)教育和职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Wang其他文献
Understanding the Scheduling Performance in Wireless Networks with Successive Interference Cancellation
了解具有连续干扰消除的无线网络的调度性能
- DOI:
10.1109/tmc.2012.140 - 发表时间:
2013-08 - 期刊:
- 影响因子:7.9
- 作者:
Ming Xu;Xiaodong Wang;Chi Liu;Xingming Zhou - 通讯作者:
Xingming Zhou
Design and fabrication of dual-functional microcapsules containing phase change material core and zirconium oxide shell with fluorescent characteristics
具有荧光特性的相变材料核和氧化锆壳双功能微胶囊的设计与制备
- DOI:
10.1016/j.solmat.2014.10.035 - 发表时间:
2015-02 - 期刊:
- 影响因子:6.9
- 作者:
Ying Zhang;Xiaodong Wang;Dezhen Wu - 通讯作者:
Dezhen Wu
Bio-inspired design of an auxiliary fishbone-shaped cathode flow field pattern for polymer electrolyte membrane fuel cells
聚合物电解质膜燃料电池辅助鱼骨形阴极流场模式的仿生设计
- DOI:
10.1016/j.enconman.2020.113588 - 发表时间:
2021 - 期刊:
- 影响因子:10.4
- 作者:
Yulin Wang;Chao Si;Yanzhou Qin;Xiaodong Wang;Yuanzhi Fan;Yuyao Gao - 通讯作者:
Yuyao Gao
Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control
涡流发生器安装角度对流动分离控制影响的实验与数值分析
- DOI:
10.3390/en12234583 - 发表时间:
2019-12 - 期刊:
- 影响因子:3.2
- 作者:
Xinkai Li;Wei Liu;Tingjun Zhang;Peiming Wang;Xiaodong Wang - 通讯作者:
Xiaodong Wang
Dynamic response analysis for the aero-engine dual-rotor-bearing system with flexible coupling misalignment faults
航空发动机双转子轴承系统弹性联轴器不对中故障动态响应分析
- DOI:
10.21595/jve.2017.18553 - 发表时间:
2018-08 - 期刊:
- 影响因子:1
- 作者:
Zhenyong Lu;Xiaodong Wang;Lei Hou;Yushu Chen;Hongliang Li - 通讯作者:
Hongliang Li
Xiaodong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Wang', 18)}}的其他基金
A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
- 批准号:
2335765 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Pushing Heterogeneous Catalysis into Biological Chemistry via Cofactor Regeneration
通过辅因子再生将多相催化推向生物化学
- 批准号:
EP/V048635/1 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Collaborative Research: Real-Time Data-Driven Anomaly Detection for Complex Networks
协作研究:复杂网络的实时数据驱动异常检测
- 批准号:
2040500 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1954549 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF: Small: Massive MIMO for Massive Machine-Type Communication
CIF:小型:用于大规模机器类型通信的大规模 MIMO
- 批准号:
1814803 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Communications with Energy Harvesting Nodes
CIF:小型:协作研究:与能量收集节点的通信
- 批准号:
1526215 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Medium Projects: Event-Triggered Sampling: Application to Decentralized Detection and Estimation
CIF:中型项目:事件触发采样:在去中心化检测和估计中的应用
- 批准号:
1064575 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CDI Type II/Collaborative Research: A New Approach to the Modeling of Clot Formation and Lysis in Arteries
CDI II 型/合作研究:动脉血栓形成和溶解建模的新方法
- 批准号:
1028112 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Some Rigidity and Comparison Problems Involving the Scalar or Ricci Curvature
涉及标量或里奇曲率的一些刚性和比较问题
- 批准号:
0905904 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
- 批准号:81601856
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on advanced multimodal signal processing and compression
先进多模态信号处理和压缩研究
- 批准号:
23K11155 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced signal processing methods for neural data analysis to support development of brain dynamic biomarkers for research and clinical applications in patients with Alzheimer's and related dementias
用于神经数据分析的先进信号处理方法,支持开发大脑动态生物标志物,用于阿尔茨海默氏症和相关痴呆症患者的研究和临床应用
- 批准号:
10739673 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Advanced Signal Processing Enabled Massive MIMO With NOMA
先进的信号处理通过 NOMA 实现大规模 MIMO
- 批准号:
RGPIN-2020-06815 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Advanced Signal Processing Techniques on a Riemannian Manifold
黎曼流形上的先进信号处理技术
- 批准号:
RGPIN-2019-05415 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Advanced Signal Processing Methods for Analysis of Fibrillatory Waves
用于分析颤动波的先进信号处理方法
- 批准号:
RGPIN-2018-05540 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Advanced wireless communications and signal processing techniques for 6G wireless networks.
适用于 6G 无线网络的先进无线通信和信号处理技术。
- 批准号:
RGPIN-2022-03653 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Advanced signal processing for dual comb interferometry
双梳干涉测量的先进信号处理
- 批准号:
RGPIN-2021-02555 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Advanced Sensor Systems and Signal Processing
先进的传感器系统和信号处理
- 批准号:
CRC-2019-00382 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Canada Research Chairs
Advanced Signal Processing for High-Speed and High-Reliability Communications in Highly Doubly Selective Underwater Acoustic Channel
高双选择性水下声学通道中高速、高可靠性通信的先进信号处理
- 批准号:
22H01481 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Advanced signal processing for dual comb interferometry
双梳干涉测量的先进信号处理
- 批准号:
RGPIN-2021-02555 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual