Probing the Electronic State of Novel Materials using the Local Atomic Structure
利用局域原子结构探测新型材料的电子态
基本信息
- 批准号:0075149
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This condensed matter physics project focuses on the use of infrared and optical spectroscopy to study the dynamics of strongly correlated electron systems. From infrared reflectivity measurements one can obtain conductivity as a function of frequency and temperature, which relates to the two-particle electronic correlation function and provides fundamental input to the characterization of novel electronic systems. As industry moves toward higher speeds, smaller sizes and solutions incorporating novel materials, the relevance of strongly correlated systems to technology increases. Compound classes to be studied include ruthenium oxides in the Ruddlesden-Popper series, ytterbium compounds that exhibit or are close to an electronic phase transition, and doped Kondo semiconductors. By studying ruthenates, which are related to both cuprate and manganate transition-metal oxides, one can investigate the relationship between magnetism and unconventional charge transport (e.g. "bad metal behavior"). The Yb compounds in our research exhibit a phase diagram that includes heavy-fermion and mixed-valence phenomena, as well as an isostructural electronic phase transition. Research on these materials can help forge a link between the moment compensation physics of the periodic Anderson model and the phase transition dynamics of Mott-Hubbard systems. Undergraduate and graduate students involved in this work learn to carry out careful measurements utilizing modern equipment and receive valuable preparation for graduate school and employment in academic, industrial or government research.%%%This condensed matter physics project involves the characterization of strongly correlated electron systems. In such materials, interactions between electrons are very powerful and can induce electronic phenomena which are not yet understood. Strong electronic interactions can also induce new phases of matter and can lead scientists to new concepts of electron transport. These materials will play an increasingly significant role in emerging technologies: as industry moves toward higher speeds and smaller sizes and seeks solutions incorporating novel materials, the knowledge base from studies of strongly correlated systems becomes increasingly relevant. In this research, spectroscopic measurements of infrared, optical and ultra-violet reflectivity will be used to obtain conductivity as a function of frequency. Such measurements can reveal the fundamental electronic excitations in systems, including ruthenium oxides, which exhibit novel transport and magnetic phases; Ytterbium compounds, which manifest a phase transition at which the electronic valence changes from integer to non-integer values; and iron silicide, a small energy gap "Kondo" semiconductor with a very high dielectric coefficient at low frequency. Students involved in this research learn to think critically and to carry out careful measurements on modern equipment. For undergraduates this experience provides valuable preparation for graduate school; for graduate students, this training enhances their preparation for a career in teaching, industry or government research. In outreach efforts at K-12 schools with substantial underrepresented populations, the PI uses demonstrations of the phenomena of strongly correlated systems (e.g. magnetism and superconductivity) to embellish presentations on research and education and careers in science.
这个凝聚态物理学项目的重点是使用红外和光学光谱学来研究强相关电子系统的动力学。通过红外反射率测量,可以获得电导率与频率和温度的函数关系,这与两粒子电子相关函数有关,并为新型电子系统的表征提供了基本输入。随着工业朝着更高的速度、更小的尺寸和采用新材料的解决方案发展,强相关系统与技术的相关性也在增加。待研究的化合物类别包括Ruddlesden-Popper系列中的钌氧化物,表现出或接近电子相变的镱化合物,以及掺杂的Kondo半导体。通过研究与铜酸盐和过渡金属氧化物相关的铁酸盐,人们可以研究磁性和非常规电荷传输(例如“坏金属行为”)之间的关系。在我们的研究中的Yb化合物表现出的相图,包括重费米子和混合价现象,以及同构的电子相变。对这些材料的研究有助于建立周期性安德森模型的矩补偿物理学与Mott-Hubbard系统的相变动力学之间的联系。参与这项工作的本科生和研究生学习利用现代设备进行仔细的测量,并为研究生院和学术,工业或政府研究就业做好宝贵的准备。这个凝聚态物理项目涉及强关联电子系统的表征。在这样的材料中,电子之间的相互作用非常强大,并且可以诱导尚未理解的电子现象。强电子相互作用也可以诱导物质的新相,并可以引导科学家对电子传输的新概念。 这些材料将在新兴技术中发挥越来越重要的作用:随着工业向更高的速度和更小的尺寸发展,并寻求采用新材料的解决方案,来自强相关系统研究的知识库变得越来越重要。在这项研究中,红外,光学和紫外线反射率的光谱测量将被用来获得电导率作为频率的函数。这种测量可以揭示系统中的基本电子激发,包括氧化钌,其表现出新颖的传输和磁相;镱化合物,其表现出相变,在该相变处电子价从整数值变为非整数值;以及硅化铁,一种小能隙“近藤”半导体,在低频下具有非常高的介电系数。参与这项研究的学生学习批判性思考,并对现代设备进行仔细测量。对于本科生来说,这种经验为研究生院提供了宝贵的准备;对于研究生来说,这种培训增强了他们在教学,工业或政府研究中的职业生涯的准备。 在K-12学校的推广工作中,学生人数严重不足,PI使用强相关系统(例如磁性和超导性)的现象演示来美化研究和教育以及科学职业的演示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Billinge其他文献
Nanoparticle structures served up on a tray
纳米粒子结构呈现在托盘上
- DOI:
10.1038/495453a - 发表时间:
2013-03-27 - 期刊:
- 影响因子:48.500
- 作者:
Simon Billinge - 通讯作者:
Simon Billinge
Simon Billinge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Billinge', 18)}}的其他基金
Conference: WORKSHOP ON SCIENTIFIC OPPORTUNITIES AND INSTRUMENTATION NEEDS FOR NEXT GENERATION MATERIALS GENOMICS BASED MATERIALS RESEARCH IN MATERIALS WITH LONG RANGE ORDER
会议:关于下一代材料的科学机会和仪器需求研讨会基于基因组学的长程有序材料研究
- 批准号:
2241238 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Complex Nanofeatures in Crystals: Theory and Experiment Meet in the Cloud
DMREF:协作研究:晶体中的复杂纳米特征:理论与实验在云端相遇
- 批准号:
1922234 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
DMREF: Deblurring our View of Atomic Arrangements in Complex Materials for Advanced Technologies
DMREF:模糊我们对先进技术复杂材料中原子排列的看法
- 批准号:
1534910 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Scientific Software Innovation Institute for Advanced Analysis of X-Ray and Neutron Scattering Data (SIXNS)
合作研究:X 射线和中子散射数据高级分析科学软件创新研究所 (SIXNS)
- 批准号:
1216719 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Joint US - Africa Materials Science Institute (JUAMI)
美国-非洲联合材料科学研究所(JUAMI)
- 批准号:
1069120 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Cyber-Infrastructure for Materials Science Workshop, Arlington, VA, May 23-25, 2006
材料科学网络基础设施研讨会,弗吉尼亚州阿灵顿,2006 年 5 月 23-25 日
- 批准号:
0627911 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
NIRT: FRG: Structure of Nanocrystals
NIRT:FRG:纳米晶体的结构
- 批准号:
0304391 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Local Atomic Structure and Properties of Transition Metal Oxides using Pair Distribution Function Analysis
使用对分布函数分析过渡金属氧化物的局域原子结构和性质
- 批准号:
9700966 - 财政年份:1997
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似海外基金
Establishment of a novel carrier doping method for molecular crystals and precise electronic state control
分子晶体新型载流子掺杂方法的建立及精确电子态控制
- 批准号:
22KJ2334 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAS: Collaborative Research: Mapping Excited State Trajectories of Multi-metal Centered Complexes by Two-Dimensional Electronic Spectroscopy
CAS:合作研究:通过二维电子光谱绘制多金属中心配合物的激发态轨迹
- 批准号:
2247821 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Mapping Excited State Trajectories of Multi-metal Centered Complexes by Two-Dimensional Electronic Spectroscopy
CAS:合作研究:通过二维电子光谱绘制多金属中心配合物的激发态轨迹
- 批准号:
2247822 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Understanding and control of structure and electronic state of thin film of highly ordered organic semiconductor molecule via photoelectron-imaging
通过光电子成像了解和控制高度有序有机半导体分子薄膜的结构和电子状态
- 批准号:
20K15176 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The electronic state of the vicinity of Mott boundary in organic superconductors studied by STM/STS
STM/STS研究有机超导体莫特边界附近的电子态
- 批准号:
22K03521 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electronic state of magnetic materials by applying direct observation of orbital degrees of freedom by synchrotron radiation X-ray diffraction
通过同步辐射X射线衍射直接观察轨道自由度来研究磁性材料的电子状态
- 批准号:
22H01934 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Informed consent in clinical trials with severe state COVID-19 patients: current practice and feasibility of electronic methods
重症COVID-19患者临床试验中的知情同意:电子方法的当前实践和可行性
- 批准号:
22K10382 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the electronic structure of the non-equilibrium state of Ca2RuO4
探索Ca2RuO4非平衡态的电子结构
- 批准号:
559976-2021 - 财政年份:2022
- 资助金额:
$ 33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exploring the electronic structure of the non-equilibrium state of Ca2RuO4
探索Ca2RuO4非平衡态的电子结构
- 批准号:
559976-2021 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
- 批准号:
10589159 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别: