Integrated, scalable MBS for flow through porous media

集成、可扩展的 MBS,用于多孔介质的流动

基本信息

项目摘要

Fluid flow through porous materials is critical for understanding and predicting the behavior of systems as diverse in function and scale as hydrocarbon reservoirs, aquifers, separation tower andreactor units with packed beds, filters, membrane separators and even catalytic converters. Recently, there has been a thrust to incorporate more physics in reservoir simulations, as well as acall for substantial improvements in computational capability through the use of High Performance Computing (HPC), in order to improve reservoir management. This need hasbecome particularly critical as oil and gas prices have fluctuated within one year from the lowestlevel of the past two decades to the highest. The goal of this project is to develop an integratedsimulator for flow through heterogeneous porous materials using a hierarchy of simulations.Current approaches involve the use of simulations having a single physical scale. However,recent advances in HPC have made it possible to increase significantly the problem size and touse more sophisticated approaches. The challenge is to combine the individual simulations into anintegrated multiscale system that will be able to include all physical scales and will self-adjust inaccordance with the input data. Emphasis will be placed on the portability, scalability, efficiencyand extensibility of the final product. The proposed simulator will be an improved prediction toolfor hydrocarbon reservoir management and will be ready for use on integrated grid architectures,as they become available.Flow through porous media is a multi-scale phenomenon. Microscopic scale simulation, based onLattice Boltzmann Methods, will be used for the direct simulation of flow through porous materials. Microtomographic digital images of rock samples will be used to realisticallyrepresent the spatial domain subjected to flow, taking advantage of the flexibility of LatticeBoltzmann Methods. At the mesoscopic scale, stochastic methods will be used for the systematicisolation and study of the effects of microscopic features of rock structure on the flow field. Thestochastic approach will also be used to develop a method for rock property characterization. Amacroscopic simulation, based on conventional finite difference methods, will be used to test theimpact of modified flow models on hydrocarbon production at reservoir scale. The macroscopicsimulation will incorporate the behavior of production/injection wells (which form singularities ina reservoir model) over the life of a reservoir. It will also incorporate coupling of flow withgeomechanics (porosity-dependent permeability and non-Darcy coefficients). The educationeffort resulting from this project will emphasize the training of undergraduate students in the useof HPC resources.This research will: (i) improve our understanding of the fundamental flow mechanisms;(ii) update the model for non-Darcy flow through anisotropic porous materials; and (iii) integratethe presence of discontinuities, such as wells and fractures, in the simulation. The innovations ofthe proposed study include: (a) use of state-of-the-art simulations at different scales; (b) use ofexperimentally measured quantities to deduce the properties of the porous medium and to updateflow models; (c) integration of the individual components of a set of prototype software into aseamless simulator for industrial use; and (d) application of a hybrid of shared-memory anddistributed parallelism to achieve scalability on a variety of HPC architectures. The research project will be extremely valuable for the educational experience of the graduate students involved. Its educational aspect will also involve the incorporation of HPC applications in the undergraduate curricula of three Departments and the development of research projects for Research Experience for Undergraduates. It will, thus, prepare a large group of the technical workforce of our State to the useful aspects of HPC applications and to interact with HPC infrastructure.
通过多孔材料的流体流动对于理解和预测具有不同功能和规模的系统的行为至关重要,这些系统包括碳氢化合物储层、含水层、分离塔和具有填充床的反应器单元、过滤器、膜分离器甚至催化转化器。 最近,为了改善油藏管理,在油藏模拟中引入更多的物理学,以及通过使用高性能计算(HPC)来大幅提高计算能力的呼声一直很高。这一需求变得尤为重要,因为石油和天然气价格在一年内从过去二十年的最低水平波动到最高水平。本项目的目标是开发一个集成的模拟器,用于通过非均质多孔材料的流动,使用层次的simulations.Current的方法涉及使用具有单一的物理尺度的模拟。然而,HPC的最新进展使得有可能显着增加问题的大小,并使用更复杂的方法。挑战在于将单个模拟联合收割机组合成一个集成的多尺度系统,该系统将能够包括所有物理尺度,并根据输入数据进行自我调整。重点将放在最终产品的可移植性、可伸缩性、效率和可扩展性上。拟议的模拟器将是一个改进的预测工具,油气藏管理,并将准备用于集成网格架构,因为它们变得可用。微观尺度模拟,基于格子玻尔兹曼方法,将用于通过多孔材料的流动的直接模拟。岩石样品的显微层析数字图像将被用来真实地表示受到流动的空间域,利用LatticeBoltzmann方法的灵活性。在细观尺度上,将采用随机方法系统地分离和研究岩石结构的微观特征对流场的影响。随机方法也将用于开发岩石性质表征的方法。基于传统有限差分方法的宏观模拟将用于测试修改后的流动模型对油藏规模油气生产的影响。宏观模拟将在油藏的整个生命周期中纳入生产/注入威尔斯井(在油藏模型中形成奇点)的行为。它还将结合耦合的流动与地质力学(孔隙度相关的渗透率和非达西系数)。本研究将:(i)提高我们对基本流动机制的理解;(ii)更新通过各向异性多孔材料的非达西流动模型;(iii)在模拟中整合不连续性的存在,如威尔斯和裂缝。本研究的创新之处包括:(a)在不同尺度上使用最先进的模拟技术;(B)使用实验测量的量来推断多孔介质的性质并更新流动模型;(c)将一套原型软件的各个组件集成到工业用的无缝隙模拟器中;以及(d)应用共享存储器和分布式并行的混合以实现在各种HPC架构上的可扩展性。 该研究项目将是非常宝贵的研究生参与的教育经验。它的教育方面还将涉及HPC应用在三个部门的本科课程和研究项目的发展为本科生的研究经验的结合。因此,它将为我们州的一大群技术人员做好准备,以了解HPC应用程序的有用方面,并与HPC基础设施进行交互。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitrios Papavassiliou其他文献

ANTHROPOMETRIC AND HEMODYNAMIC CORRELATES OF ENDOTHELIUM-DEPENDENT FEMORAL ARTERY DILATION IN HEALTHY YOUTH. † 646
健康青年内皮依赖性股动脉扩张的人体测量学和血流动力学相关性。†646
  • DOI:
    10.1203/00006450-199604001-00668
  • 发表时间:
    1996-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Dimitrios Papavassiliou;Frank Treiber;David Malpass;Jonathan Wright;William B Strong
  • 通讯作者:
    William B Strong

Dimitrios Papavassiliou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitrios Papavassiliou', 18)}}的其他基金

GCR: Transition to green energy in gas-producing regions: How the convergence of Engineering, Social Sciences and Geoscience can enable carbon-free H2 technologies
GCR:天然气生产地区向绿色能源转型:工程、社会科学和地球科学的融合如何实现无碳氢气技术
  • 批准号:
    2317726
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Continuing Grant
Investigation of the effects of turbulent flow on energy and mass transfer close to solid surfaces
研究湍流对固体表面附近能量和质量传递的影响
  • 批准号:
    1803014
  • 财政年份:
    2018
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Effects of hydrophobicity-induced wall slip on turbulence drag and turbulence structure
疏水性引起的壁滑移对湍流阻力和湍流结构的影响
  • 批准号:
    0853657
  • 财政年份:
    2009
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Turbulent transport in anisotropic velocity fields
各向异性速度场中的湍流传输
  • 批准号:
    0651180
  • 财政年份:
    2007
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Turbulent Transport in Wall Turbulence
壁面湍流中的湍流传输
  • 批准号:
    0209758
  • 财政年份:
    2002
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Gas Adsorption in Nanoporous Materials: Molecular Structure and Recognition
纳米多孔材料中的气体吸附:分子结构与识别
  • 批准号:
    0114123
  • 财政年份:
    2001
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
  • 批准号:
    2335583
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
  • 批准号:
    2346712
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了