Integrated, scalable MBS for flow through porous media

集成、可扩展的 MBS,用于多孔介质的流动

基本信息

项目摘要

Fluid flow through porous materials is critical for understanding and predicting the behavior of systems as diverse in function and scale as hydrocarbon reservoirs, aquifers, separation tower andreactor units with packed beds, filters, membrane separators and even catalytic converters. Recently, there has been a thrust to incorporate more physics in reservoir simulations, as well as acall for substantial improvements in computational capability through the use of High Performance Computing (HPC), in order to improve reservoir management. This need hasbecome particularly critical as oil and gas prices have fluctuated within one year from the lowestlevel of the past two decades to the highest. The goal of this project is to develop an integratedsimulator for flow through heterogeneous porous materials using a hierarchy of simulations.Current approaches involve the use of simulations having a single physical scale. However,recent advances in HPC have made it possible to increase significantly the problem size and touse more sophisticated approaches. The challenge is to combine the individual simulations into anintegrated multiscale system that will be able to include all physical scales and will self-adjust inaccordance with the input data. Emphasis will be placed on the portability, scalability, efficiencyand extensibility of the final product. The proposed simulator will be an improved prediction toolfor hydrocarbon reservoir management and will be ready for use on integrated grid architectures,as they become available.Flow through porous media is a multi-scale phenomenon. Microscopic scale simulation, based onLattice Boltzmann Methods, will be used for the direct simulation of flow through porous materials. Microtomographic digital images of rock samples will be used to realisticallyrepresent the spatial domain subjected to flow, taking advantage of the flexibility of LatticeBoltzmann Methods. At the mesoscopic scale, stochastic methods will be used for the systematicisolation and study of the effects of microscopic features of rock structure on the flow field. Thestochastic approach will also be used to develop a method for rock property characterization. Amacroscopic simulation, based on conventional finite difference methods, will be used to test theimpact of modified flow models on hydrocarbon production at reservoir scale. The macroscopicsimulation will incorporate the behavior of production/injection wells (which form singularities ina reservoir model) over the life of a reservoir. It will also incorporate coupling of flow withgeomechanics (porosity-dependent permeability and non-Darcy coefficients). The educationeffort resulting from this project will emphasize the training of undergraduate students in the useof HPC resources.This research will: (i) improve our understanding of the fundamental flow mechanisms;(ii) update the model for non-Darcy flow through anisotropic porous materials; and (iii) integratethe presence of discontinuities, such as wells and fractures, in the simulation. The innovations ofthe proposed study include: (a) use of state-of-the-art simulations at different scales; (b) use ofexperimentally measured quantities to deduce the properties of the porous medium and to updateflow models; (c) integration of the individual components of a set of prototype software into aseamless simulator for industrial use; and (d) application of a hybrid of shared-memory anddistributed parallelism to achieve scalability on a variety of HPC architectures. The research project will be extremely valuable for the educational experience of the graduate students involved. Its educational aspect will also involve the incorporation of HPC applications in the undergraduate curricula of three Departments and the development of research projects for Research Experience for Undergraduates. It will, thus, prepare a large group of the technical workforce of our State to the useful aspects of HPC applications and to interact with HPC infrastructure.
流体流经多孔材料对于理解和预测系统的行为至关重要,因为功能和规模多样化,作为碳氢化合物储层,含水层,分离塔和带有包装床,过滤器,膜分离器甚至催化转化器的单元。 最近,已经有一种建议将更多的物理学纳入储层模拟中,并通过使用高性能计算(HPC)来大大提高计算能力,以改善储层管理。这种需求特别关键,因为从过去的二十年中的最低级别到最高,石油和天然气价格在一年内波动。该项目的目的是使用模拟的层次结构开发通过异质多孔材料进行流动的集成模拟器。电流方法涉及使用具有单个物理规模的模拟。但是,HPC的最新进展使得有可能显着增加问题大小,并提出更复杂的方法。面临的挑战是将单个仿真组合到序列的多尺度系统中,该系统将能够包含所有物理量表,并将与输入数据自我调整。将重点放在最终产品的可移植性,可扩展性,效率和可扩展性上。提出的模拟器将成为用于碳氢化合物储层管理的改进的预测工具,并可以在集成的网格体系结构上使用。微观尺度仿真,基于鲍尔茨曼植物的植物,将用于直接通过多孔材料进行流动模拟。岩石样品的微视图数字图像将利用LatticeBoltzmann方法的灵活性实际上陈述受到流动的空间域。在介质量表上,随机方法将用于系统分离和研究岩石结构对流场的微观特征的影响。基质方法还将用于开发一种用于岩石性质表征的方法。基于常规有限差异方法的合格模拟将用于测试储层量表上碳氢化合物生产中修饰流模型的影响。宏观模拟将结合储层寿命的生产/注入井(形成奇异性Ina储层模型)的行为。它还将结合流动与地球力学的耦合(孔隙率依赖性渗透性和非律系数)。该项目产生的教育福生将强调在使用HPC资源中对本科生的培训。这项研究将:(i)提高我们对基本流动机制的理解;(ii)更新通过各向异性多孔材料的非携带流量的模型; (iii)在模拟中综合存在不连续性,例如井和断裂。拟议研究的创新包括:(a)在不同尺度上使用最先进的模拟; (b)使用经验丰富的数量来推断多孔介质的属性和更新流量模型; (c)将一组原型软件的单个组件集成到工业用途的无线模拟器中; (d)应用共享 - 内存和分布的并行性的混合物,以在各种HPC体系结构上实现可扩展性。 该研究项目对于参与研究生的教育经验非常有价值。它的教育方面还将涉及将HPC应用程序纳入三个部门的本科课程,以及开发本科生研究经验的研究项目。因此,它将为我们州的大量技术劳动力准备HPC应用程序的有用方面并与HPC基础架构进行交互。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitrios Papavassiliou其他文献

Dimitrios Papavassiliou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitrios Papavassiliou', 18)}}的其他基金

GCR: Transition to green energy in gas-producing regions: How the convergence of Engineering, Social Sciences and Geoscience can enable carbon-free H2 technologies
GCR:天然气生产地区向绿色能源转型:工程、社会科学和地球科学的融合如何实现无碳氢气技术
  • 批准号:
    2317726
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Continuing Grant
Investigation of the effects of turbulent flow on energy and mass transfer close to solid surfaces
研究湍流对固体表面附近能量和质量传递的影响
  • 批准号:
    1803014
  • 财政年份:
    2018
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Effects of hydrophobicity-induced wall slip on turbulence drag and turbulence structure
疏水性引起的壁滑移对湍流阻力和湍流结构的影响
  • 批准号:
    0853657
  • 财政年份:
    2009
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Turbulent transport in anisotropic velocity fields
各向异性速度场中的湍流传输
  • 批准号:
    0651180
  • 财政年份:
    2007
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Turbulent Transport in Wall Turbulence
壁面湍流中的湍流传输
  • 批准号:
    0209758
  • 财政年份:
    2002
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Gas Adsorption in Nanoporous Materials: Molecular Structure and Recognition
纳米多孔材料中的气体吸附:分子结构与识别
  • 批准号:
    0114123
  • 财政年份:
    2001
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
  • 批准号:
    62335019
  • 批准年份:
    2023
  • 资助金额:
    225.00 万元
  • 项目类别:
    重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了