Indentation Mechanics of Monocrystalline Substrates

单晶衬底的压痕力学

基本信息

  • 批准号:
    0084948
  • 负责人:
  • 金额:
    $ 17.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-10-01 至 2004-09-30
  • 项目状态:
    已结题

项目摘要

0084948PeraltaInstrumented sharp indentation provides valuable information on the mechanical properties of materials and is the test of choice when small volumes are involved. This is usually the case in single crystal studies, since they are often produced in small quantities and can be too delicate for conventional testing. Single crystal behavior is intrinsically anisotropic and so is the response of textured polycrystals and thin films, which are also often characterized using indentation. However, most of the models used to analyze hardness are isotropic and, therefore, cannot capture all the aspects of the anisotropic behavior of monocrystalline and/or strongly textured materials. Furthermore, models to account for crystallographic slip around indents on monocrystals do not seem to be available. It is then necessary to perform experimental and theoretical work to relate load-penetration data, slip and hardening behavior around indents on single crystals to their mechanical properties.A dual experimental/theoretical approach can be used to understand the effect of anisotropy on the indentation mechanics of materials. Monocrystals will be grown from selected materials and instrumented indentation tests performed on high symmetry planes. Profilometry, atomic force microscopy and reference grids will be used to determine surface displacements. The slip behavior around indents will be characterized using slip trace analysis and transmission electron microscopy. Meanwhile, small-scale yielding models for sharp indenters will be developed for anisotropic elasticity as well as models to account for plasticity due to crystallographic slip. These models will be used to obtain load-penetration curves and the evolution of the contact area between the sample and the indenter. Finally, correlations between the experimental data and basic material properties in single crystals, such as the elastic moduli and critical resolved shear stresses, will be established through the models. This project will also actively involve undergraduate and graduate students in experimental and theoretical research. ***
0084948 Peralta仪器化尖锐压痕提供了有关材料机械性能的宝贵信息,并且是涉及小体积时的首选测试。这通常是单晶研究的情况,因为它们通常是小批量生产的,并且对于常规测试来说太精细了。单晶行为本质上是各向异性的,织构多晶体和薄膜的响应也是如此,它们也经常使用压痕来表征。然而,大多数用于分析硬度的模型是各向同性的,因此,不能捕捉单晶和/或强织构材料的各向异性行为的所有方面。此外,模型来解释单晶体上的压痕周围的晶体滑移似乎是不可用的。因此,有必要进行实验和理论研究,将载荷-穿透数据、单晶压痕周围的滑移和硬化行为与其力学性能联系起来。实验/理论双重方法可以用来理解各向异性对材料压痕力学的影响。单晶将从选定的材料和仪器压痕测试高对称平面上进行生长。将使用轮廓测定法、原子力显微镜和参考网格来确定表面位移。压痕附近的滑移行为将使用滑移痕迹分析和透射电子显微镜来表征。同时,小规模的屈服模型的尖锐压头将开发各向异性弹性以及模型,以考虑塑性由于晶体滑移。这些模型将用于获得载荷-穿透曲线以及样品与压头之间的接触面积的演变。最后,实验数据和单晶中的基本材料性质之间的相关性,例如弹性模量和临界分解剪切应力,将通过模型建立。该项目还将积极吸引本科生和研究生参与实验和理论研究。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pedro Peralta其他文献

On the failure of NiAl bicrystals during laser-induced shock compression
  • DOI:
    10.1016/j.msea.2005.05.074
  • 发表时间:
    2005-09-15
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Loomis;Damian Swift;Pedro Peralta;Ken McClellan
  • 通讯作者:
    Ken McClellan
Microstructure representation and material characterization for multiscale finite element simulations of local mechanical behavior in damaged metallic structures
受损金属结构局部机械行为的多尺度有限元模拟的微观结构表示和材料表征
  • DOI:
    10.1117/12.776580
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. P. Garcia;Chuntao Luo;A. Noshadravan;A. Keck;R. Teale;Aditi Chattopadhyay;Pedro Peralta
  • 通讯作者:
    Pedro Peralta
Micro-cantilever beam experiments and modeling in porous polycrystalline UO<sub>2</sub>
  • DOI:
    10.1016/j.jnucmat.2021.153210
  • 发表时间:
    2021-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Bowen Gong;David Frazer;Benjamin Shaffer;Harn Chyi Lim;Peter Hosemann;Pedro Peralta
  • 通讯作者:
    Pedro Peralta

Pedro Peralta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pedro Peralta', 18)}}的其他基金

Investigation of fundamental creep behavior and mechanisms in a thermally stable nanocrystalline alloy
热稳定纳米晶合金基本蠕变行为和机制的研究
  • 批准号:
    1810431
  • 财政年份:
    2018
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Standard Grant
CAREER: Kinematics of Stage II Fatigue Crack Propagation
职业:第二阶段疲劳裂纹扩展的运动学
  • 批准号:
    9984633
  • 财政年份:
    2000
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Continuing Grant

相似国自然基金

Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
  • 批准号:
    2409316
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
  • 批准号:
    2339001
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Fellowship
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
  • 批准号:
    2331994
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Standard Grant
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
  • 批准号:
    BB/Y003896/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
  • 批准号:
    EP/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Research Grant
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
  • 批准号:
    23K23887
  • 财政年份:
    2024
  • 资助金额:
    $ 17.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了