Collaborative Research: Improved Minimization Techniques in Meteorological Data Assimilation
协作研究:气象资料同化中改进的最小化技术
基本信息
- 批准号:0086579
- 负责人:
- 金额:$ 24.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-03-01 至 2005-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop improved optimization techniques for use in three- and four-dimensional data assimilation in meteorology that will both reduce the computer time required in the assimilation process and increase the reliability of the results. The research will consist of experimental work with existing assimilation codes, in conjunction with a theoretical study of both the optimization algorithms and the physical models. The project represents a collaborative effort among Dr. Jorge Nocedal (Northwestern University), Dr. Stephen Wright (University of Chicago), and researchers at the National Centers for Environmental Prediction (NCEP).The new optimization techniques include enriched limited memory quasi-Newton methods for minimizing the nonlinear cost functions, automatic preconditioners to accelerate the conjugate gradient method, and structured quasi-Newton methods of nonlinear least squares problems. The new techniques will be designed for the case in which the background covariance matrix does not have a simple sparsity structure. The techniques must also be robust when varying levels of resolution are used in the model during computation, a common situation with meteorological models. Thus, a theoretical framework that quantifies the effects of these inaccuracies on the performance of the algorithms will have to be developed.The Divisions of Atmospheric Sciences and Mathematical Sciences jointly support this project.
该项目的目标是开发改进的优化技术,用于气象学中的三维和四维数据同化,既减少同化过程所需的计算机时间,又提高结果的可靠性。 这项研究将包括现有的同化代码的实验工作,结合优化算法和物理模型的理论研究。 该项目代表了豪尔赫·诺塞达尔博士(西北大学),斯蒂芬赖特博士(芝加哥大学)和国家环境预测中心(NCEP)的研究人员。新的优化技术包括用于最小化非线性成本函数的丰富的有限内存拟牛顿方法,用于加速共轭梯度方法的自动预处理器,和非线性最小二乘问题的结构拟牛顿方法。 新技术将被设计用于背景协方差矩阵不具有简单稀疏结构的情况。 当在计算过程中在模型中使用不同级别的分辨率时,这些技术也必须是鲁棒的,这是气象模型的常见情况。 因此,必须建立一个理论框架,量化这些不准确性对算法性能的影响。大气科学和数学科学司共同支持这一项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jorge Nocedal其他文献
Analysis of a self-scaling quasi-Newton method
- DOI:
10.1007/bf01582136 - 发表时间:
1993-08-01 - 期刊:
- 影响因子:2.500
- 作者:
Jorge Nocedal;Ya-xiang Yuan - 通讯作者:
Ya-xiang Yuan
A family of second-order methods for convex $$\ell _1$$ -regularized optimization
- DOI:
10.1007/s10107-015-0965-3 - 发表时间:
2015-11-30 - 期刊:
- 影响因子:2.500
- 作者:
Richard H. Byrd;Gillian M. Chin;Jorge Nocedal;Figen Oztoprak - 通讯作者:
Figen Oztoprak
Numerical Experience with a Reduced Hessian Method for Large Scale Constrained Optimization
- DOI:
10.1023/a:1008723031056 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:2.000
- 作者:
Lorenz T. Biegler;Jorge Nocedal;Claudia Schmid;David Ternet - 通讯作者:
David Ternet
Analysis of a new algorithm for one-dimensional minimization
- DOI:
10.1007/bf02246561 - 发表时间:
1979-03-01 - 期刊:
- 影响因子:2.800
- 作者:
Petter Bjørstad;Jorge Nocedal - 通讯作者:
Jorge Nocedal
On the use of piecewise linear models in nonlinear programming
- DOI:
10.1007/s10107-011-0492-9 - 发表时间:
2011-10-12 - 期刊:
- 影响因子:2.500
- 作者:
Richard H. Byrd;Jorge Nocedal;Richard A. Waltz;Yuchen Wu - 通讯作者:
Yuchen Wu
Jorge Nocedal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jorge Nocedal', 18)}}的其他基金
Zero-Order and Stochastic Methods for Large-Scale Optimization
大规模优化的零阶随机方法
- 批准号:
2011494 - 财政年份:2020
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Collaborative Research: Algorithms for Large-Scale Stochastic and Nonlinear Optimization
合作研究:大规模随机和非线性优化算法
- 批准号:
1620022 - 财政年份:2016
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Collaborative Research: Methods for Stochastic and Nonlinear Optimization
协作研究:随机和非线性优化方法
- 批准号:
1216567 - 财政年份:2012
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Collaborative Research: Market-Based Calibration of Pricing Models for Financial and Energy Option Contracts
合作研究:基于市场的金融和能源期权合约定价模型校准
- 批准号:
1030540 - 财政年份:2010
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Nonlinear Optimization: Algorithms, Theory and Software
非线性优化:算法、理论和软件
- 批准号:
0810213 - 财政年份:2008
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
U.S. - Mexico Workshop in Numerical Analysis; Oaxaca, Mexico, January 2007
美国-墨西哥数值分析研讨会;
- 批准号:
0623827 - 财政年份:2006
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Active-Set and Interior Algorithms for Non-Linear Optimization
非线性优化的活动集和内部算法
- 批准号:
0514772 - 财政年份:2005
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
ITR: Collaborative Research: Optimization of Systems Governed by Partial Differential Equations
ITR:协作研究:偏微分方程控制系统的优化
- 批准号:
0219438 - 财政年份:2002
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Challenges in CISE: Metacomputing Environments for Optimization
CISE 中的挑战:用于优化的元计算环境
- 批准号:
9726385 - 财政年份:1997
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314270 - 财政年份:2024
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314271 - 财政年份:2024
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314273 - 财政年份:2024
- 资助金额:
$ 24.01万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Geochronology-Based Sediment Provenance Analysis Through Physico-Mechanical Characterization of Zircon Transport
合作研究:通过锆石运移的物理机械表征改进基于地质年代学的沉积物物源分析
- 批准号:
2314016 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229473 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Collaborative Research: A New 3-D Velocity and Structural Model of the Northern Basins in the Los Angeles Region for Improved Ground Motion Estimates
合作研究:洛杉矶地区北部盆地的新 3D 速度和结构模型,用于改进地震动估计
- 批准号:
2317154 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229472 - 财政年份:2023
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant
Collaborative Research: Towards improved imaging of the outermost core through determination of the effects of lowermost mantle heterogeneity and anisotropy
合作研究:通过确定最低地幔异质性和各向异性的影响来改善最外层地核的成像
- 批准号:
2307537 - 财政年份:2022
- 资助金额:
$ 24.01万 - 项目类别:
Standard Grant