Collaborative Research: Algorithms for Large-Scale Stochastic and Nonlinear Optimization
合作研究:大规模随机和非线性优化算法
基本信息
- 批准号:1620022
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The promise of artificial intelligence has been a topic of both public and private interest for decades. Starting in the 1990s the field has been benefited from the rapidly evolving and expanding field of machine learning. The intelligent systems that have been borne out of machine learning, such as search engines, recommendation platforms, and speech and image recognition software, have become an indispensable part of modern society. Rooted in statistics and relying heavily on the efficiency of numerical algorithms, machine learning techniques capitalize on increasingly powerful computing platforms and the availability of very large datasets. One of the pillars of machine learning is mathematical optimization, which, in this context, involves the computation of parameters for a system designed to make decisions based on yet unseen data. The goal of this project is to develop new optimization algorithms that will enable the continuing rise of the field of machine learning. The research consists of two projects, which are thematically related and address the solution of optimization problems that are nonlinear, high dimensional, stochastic, involve very large data sets and in some cases are non-convex. Two families of algorithms will be developed to garner the benefits of both stochastic gradient methods and batch methods, while avoiding their shortcomings. One of these algorithms uses a gradient aggregation approach that re-uses gradient values computed at previous iterations. The challenge is to design an algorithm that is efficient in minimizing testing error, not just training error. The second approach employs adaptive sampling techniques to reduce the noise in stochastic gradient approximations as the optimization progresses. An important aspect of this research is the design of an efficient strategy for incorporating second-order information that captures curvature of the optimized loss function, even in the case when Hessian estimates are based on inaccurate gradients. In all cases, the goal is research is to design and implement algorithms in software, and test them on realistic machine learning applications.
几十年来,人工智能的前景一直是公共和私人利益的话题。从20世纪90年代开始,该领域受益于机器学习领域的快速发展和扩展。由机器学习衍生出来的智能系统,如搜索引擎、推荐平台、语音和图像识别软件,已经成为现代社会不可或缺的一部分。 机器学习技术植根于统计学,严重依赖数值算法的效率,利用日益强大的计算平台和非常大的数据集的可用性。 机器学习的支柱之一是数学优化,在这种情况下,它涉及到为系统计算参数,该系统旨在根据尚未看到的数据做出决策。该项目的目标是开发新的优化算法,使机器学习领域的持续增长成为可能。 该研究由两个项目组成,这两个项目在主题上是相关的,并解决非线性,高维,随机,涉及非常大的数据集,在某些情况下是非凸的优化问题的解决方案。将开发两个系列的算法,以获得随机梯度方法和批处理方法的好处,同时避免它们的缺点。这些算法之一使用梯度聚合方法,该方法重新使用在先前迭代中计算的梯度值。挑战在于设计一种有效的算法,使测试误差最小化,而不仅仅是训练误差。第二种方法采用自适应采样技术,以减少随机梯度近似的优化过程中的噪声。这项研究的一个重要方面是设计一个有效的策略,将二阶信息,捕捉曲率的优化损失函数,即使在海森估计是基于不准确的梯度的情况下。在所有情况下,研究的目标都是在软件中设计和实现算法,并在现实的机器学习应用程序中测试它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jorge Nocedal其他文献
Analysis of a self-scaling quasi-Newton method
- DOI:
10.1007/bf01582136 - 发表时间:
1993-08-01 - 期刊:
- 影响因子:2.500
- 作者:
Jorge Nocedal;Ya-xiang Yuan - 通讯作者:
Ya-xiang Yuan
A family of second-order methods for convex $$\ell _1$$ -regularized optimization
- DOI:
10.1007/s10107-015-0965-3 - 发表时间:
2015-11-30 - 期刊:
- 影响因子:2.500
- 作者:
Richard H. Byrd;Gillian M. Chin;Jorge Nocedal;Figen Oztoprak - 通讯作者:
Figen Oztoprak
Numerical Experience with a Reduced Hessian Method for Large Scale Constrained Optimization
- DOI:
10.1023/a:1008723031056 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:2.000
- 作者:
Lorenz T. Biegler;Jorge Nocedal;Claudia Schmid;David Ternet - 通讯作者:
David Ternet
Analysis of a new algorithm for one-dimensional minimization
- DOI:
10.1007/bf02246561 - 发表时间:
1979-03-01 - 期刊:
- 影响因子:2.800
- 作者:
Petter Bjørstad;Jorge Nocedal - 通讯作者:
Jorge Nocedal
On the use of piecewise linear models in nonlinear programming
- DOI:
10.1007/s10107-011-0492-9 - 发表时间:
2011-10-12 - 期刊:
- 影响因子:2.500
- 作者:
Richard H. Byrd;Jorge Nocedal;Richard A. Waltz;Yuchen Wu - 通讯作者:
Yuchen Wu
Jorge Nocedal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jorge Nocedal', 18)}}的其他基金
Zero-Order and Stochastic Methods for Large-Scale Optimization
大规模优化的零阶随机方法
- 批准号:
2011494 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Methods for Stochastic and Nonlinear Optimization
协作研究:随机和非线性优化方法
- 批准号:
1216567 - 财政年份:2012
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Market-Based Calibration of Pricing Models for Financial and Energy Option Contracts
合作研究:基于市场的金融和能源期权合约定价模型校准
- 批准号:
1030540 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Nonlinear Optimization: Algorithms, Theory and Software
非线性优化:算法、理论和软件
- 批准号:
0810213 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
U.S. - Mexico Workshop in Numerical Analysis; Oaxaca, Mexico, January 2007
美国-墨西哥数值分析研讨会;
- 批准号:
0623827 - 财政年份:2006
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Active-Set and Interior Algorithms for Non-Linear Optimization
非线性优化的活动集和内部算法
- 批准号:
0514772 - 财政年份:2005
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
ITR: Collaborative Research: Optimization of Systems Governed by Partial Differential Equations
ITR:协作研究:偏微分方程控制系统的优化
- 批准号:
0219438 - 财政年份:2002
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Minimization Techniques in Meteorological Data Assimilation
协作研究:气象资料同化中改进的最小化技术
- 批准号:
0086579 - 财政年份:2001
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Challenges in CISE: Metacomputing Environments for Optimization
CISE 中的挑战:用于优化的元计算环境
- 批准号:
9726385 - 财政年份:1997
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402284 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
- 批准号:
2423105 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331781 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant














{{item.name}}会员




