Jamming in Model Supercooled Liquids and Athermal Systems
模型过冷液体和无热系统中的干扰
基本信息
- 批准号:0087349
- 负责人:
- 金额:$ 24.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-11-01 至 2004-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0087349LiuThis grant supports theoretical and computational research on the properties of disordered systems. In particular, research will be done on the concept of jamming. Many systems with no quenched disorder can jam, i.e., develop a yield stress or an immeasurably long stress relaxation time in a disordered state. These systems include supercooled liquids, colloidal suspensions, granular materials, emulsions and foams. It has recently been suggested that the onset of jamming might lead to some degree of universality. This is the concept of jamming. Specifically, it has been suggested that different systems should show similar behavior as they jam, and that each system has a jamming phase diagram.The concept of jamming will be explored using numerical simulations on two very different systems that both exhibit transitions to constrained dynamics. The first is a quiescent thermal system, namely a binary Lennard-Jones mixture. This model has been shown to jam as the temperature is lowered to the glass transition. The second system to be studied is a driven, athermal system that has been shown to jam as the shear stress is lowered to the yield stress or as the density of particles is raised above close-packing.One objective of the proposed research is to exploit the idea of jamming to gain new insight into the glass transition by applying recent ideas from granular materials (namely force chains) to supercooled liquids. We will also test the idea of jamming by calculating the complete jamming phase diagram for a binary Lennard-Jones mixture. Finally, we will test whether shear-induced fluctuations can be described by an enhanced effective temperature in binary Lennard-Jones mixtures. The idea of an effective temperature is already widely used to describe unjammed granular materials and needs to be examined carefully.At a minimum, we will learn much more about the behavior of two intriguing systems (supercooled liquids and sheared athermal packings), even if we discover that their connection is only superficial. If the concept of jamming is correct, however, it will be extremely powerful because ideas derived from one system will be applicable to another. The recognition that different systems can be viewed within a broader framework has revolutionalized a number of fields in the past. It is important to explore the avenue of jamming because it may lead to new and deeper understanding of long unsolved problems such as the glass transition.%%% This grant supports theoretical and computational research on the properties of disordered systems. In particular, research will be done on the concept of jamming. Jamming commonly occurs to most of us in the form of traffic jams. As too many vehicles try to pass through a constrained path, the smooth flow of traffic becomes stopped or jammed. Many physical systems comprised of many particles can also jam, i.e., develop a yield stress or an immeasurably long stress relaxation time in a disordered state. These systems include supercooled liquids, colloidal suspensions, granular materials, emulsions and foams. It has recently been suggested that the onset of jamming might lead to some degree of universality among these diverse systems. This is the concept of jamming. Specifically, it has been suggested that different systems should show similar behavior as they jam, and that each system has a jamming phase diagram. In this research the concept of jamming will be explored using numerical simulations on two very different systems that both exhibit transitions to constrained dynamics. ***
0087349 Liu该基金支持对无序系统性质的理论和计算研究。 特别是,将对干扰的概念进行研究。 许多没有淬灭无序的系统可能堵塞,即,在无序状态下产生屈服应力或不可测量的长应力松弛时间。 这些系统包括过冷液体、胶体悬浮液、颗粒材料、乳液和泡沫。 最近有人提出,干扰的开始可能导致某种程度的普遍性。 这就是干扰的概念。 具体来说,它已被建议,不同的系统应该表现出类似的行为,因为他们的干扰,每个系统都有一个干扰phase diagrams.干扰的概念将探讨使用两个非常不同的系统,都表现出过渡到约束动力学的数值模拟。 第一种是静态热系统,即二元Lennard-Jones混合物。 随着温度降低到玻璃化转变,该模型已被证明会堵塞。 要研究的第二个系统是一个驱动的,非热系统,已被证明堵塞的剪切应力降低到屈服应力或颗粒的密度提高以上密堆积的建议research.One的目标是利用堵塞的想法,获得新的洞察到玻璃化转变的应用最近的想法从粒状材料(即力链)的过冷液体。 我们还将通过计算二元Lennard-Jones混合物的完整干扰相图来测试干扰的想法。 最后,我们将测试是否剪切引起的波动可以描述一个增强的有效温度在二元Lennard-Jones混合物。 有效温度的概念已经被广泛用于描述未堵塞的颗粒物质,需要仔细研究。至少,我们将更多地了解两个有趣系统(过冷液体和剪切无热填料)的行为,即使我们发现它们之间的联系只是表面的。 然而,如果干扰的概念是正确的,它将是极其强大的,因为来自一个系统的思想将适用于另一个系统。 认识到可以在更广泛的框架内看待不同的系统,在过去已经彻底改变了许多领域。 探索干扰的途径很重要,因为它可能会导致对长期未解决的问题(如玻璃化转变)的新的和更深入的理解。该补助金支持对无序系统性质的理论和计算研究。 特别是,将研究干扰的概念。 我们大多数人经常遇到交通堵塞的情况。 当太多的车辆试图通过一条受限的路径时,顺畅的交通流就会停止或堵塞。 由许多粒子组成的许多物理系统也可能堵塞,即,在无序状态下产生屈服应力或不可测量的长应力松弛时间。 这些系统包括过冷液体、胶体悬浮液、颗粒材料、乳液和泡沫。 最近有人提出,干扰的开始可能导致这些不同系统之间某种程度的普遍性。 这就是干扰的概念。具体来说,有人建议,不同的系统应该表现出类似的行为,因为他们堵塞,每个系统都有一个干扰相图。 在这项研究中,干扰的概念将探讨使用两个非常不同的系统,都表现出过渡到约束动力学的数值模拟。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Liu其他文献
Identifying microscopic factors that influence ductility in disordered solids
识别影响无序固体延展性的微观因素
- DOI:
10.1073/pnas.2307552120 - 发表时间:
2023 - 期刊:
- 影响因子:11.1
- 作者:
Hongyi Xiao;Ge Zhang;Entao Yang;Robert J. S. Ivancic;S. Ridout;Robert A. Riggleman;D. Durian;Andrea Liu - 通讯作者:
Andrea Liu
3214 – AGE-RELATED CHANGES IN HEMATOPOIETIC STEM CELL PROTEOSTASIS PROMOTE THE EMERGENCE OF CLONAL HEMATOPOIESIS
- DOI:
10.1016/j.exphem.2024.104534 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Fanny Zhou;Helen Wang;Wei Yang;Michelle Le;Andrea Liu;Mary Jean Sunshine;Jeffrey Magee;Robert Signer - 通讯作者:
Robert Signer
3102 – HSF1 PROMOTES ACUTE MYELOID LEUKEMIA PROGRESSION AND DRUG RESISTANCE BY ATTENUATING ACTIVATION OF A TERMINAL UNFOLDED PROTEIN RESPONSE
- DOI:
10.1016/j.exphem.2024.104424 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Yoon Joon Kim;Kentson Lam;Carlo Ong;Andrea Liu;Fanny Zhou;Robert Signer - 通讯作者:
Robert Signer
Temporal variability in the stable carbon and nitrogen isotope values from common mid-trophic level species in the Bering Sea
白令海常见中营养级物种稳定碳和氮同位素值的时间变化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrea Liu - 通讯作者:
Andrea Liu
Disrupting Autophagy Sensitizes Human Acute Myeloid Leukemia Cells to Proteasome Inhibition By Disrupting Protein Homeostasis
- DOI:
10.1182/blood-2023-182149 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Kentson Lam;Yoon Joon Kim;Carlo M. Ong;Andrea Liu;Bernadette Chua;Jie-Hua Zhou;Edward D. Ball;Robert Signer - 通讯作者:
Robert Signer
Andrea Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Liu', 18)}}的其他基金
Theoretical Studies of Tunable Networks
可调谐网络的理论研究
- 批准号:
2005749 - 财政年份:2021
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Theoretical Studies of Mechanics in Active Matter
活性物质力学的理论研究
- 批准号:
1506625 - 财政年份:2015
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Self-assembly and motility far from equilibrium
自组装和运动远离平衡
- 批准号:
1104637 - 财政年份:2011
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
Statistical Physics of Disordered and Driven Systems
无序和驱动系统的统计物理
- 批准号:
0605044 - 财政年份:2006
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Self-assembly of Charged Biopolymers in Solution
带电生物聚合物在溶液中的自组装
- 批准号:
0613331 - 财政年份:2005
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Self-assembly of Charged Biopolymers in Solution
带电生物聚合物在溶液中的自组装
- 批准号:
0096492 - 财政年份:2001
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Chain Structure and Counterion Condensation in Solutions of Flexible Polyelectrolyte Chains
柔性聚电解质链溶液中的链结构和反离子缩合
- 批准号:
9619277 - 财政年份:1997
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
Theoretical Studies of Near-Critical Fluids in Dilute Porous Media
稀多孔介质中近临界流体的理论研究
- 批准号:
9624090 - 财政年份:1996
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 24.6万 - 项目类别:
Studentship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
- 批准号:
2422573 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
CAREER: Adapting the Fluid Projection Method to Model Elasto-plastic Materials
职业:采用流体投影方法来模拟弹塑性材料
- 批准号:
2427204 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307253 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307251 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
- 批准号:
2339556 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Cooperative Agreement