Self-assembly and motility far from equilibrium
自组装和运动远离平衡
基本信息
- 批准号:1104637
- 负责人:
- 金额:$ 54.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical SummaryThe Division of Materials Research and the Division of Molecular and Cellular Biosciences contribute funds to this award. This award supports theoretical and computational research and education to understand the physical mechanism by which living organisms propel themselves. Certain motile biological objects, such as the bacterium Listeria monocytogenes and replicating chromosomes in asymmetric bacteria like Caulobacter crescentus and Vibrio cholerae, generate their propulsion by polymerizing or depolymerizing protein filaments. This establishes a concentration gradient in the protein so that there are more filaments on one side of the object than the other. A colloid that maintains an asymmetric concentration of a small solute around it will propel itself through a fluid with a well-defined velocity. This phenomenon, known as self-diffusiophoresis, has been exploited as a means of propulsion of micro- or nano-swimmers. In a typical example, the concentration gradient is controlled by an active region on the colloid that catalyzes a chemical reaction, leading to more product and less reactant near the active region than on the far side of the colloid. The distribution of solute around the colloid is determined by a combination of diffusion and advection. An interaction between the colloid and solute sets up fluid flow that ultimately propels the particle. If the solute is small, so that its diffusion is rapid compared to advection, it is known that only two conditions are needed to achieve motility: the motile object must be able to maintain an asymmetric solute distribution in steady state, and there must be a net interaction between the solute and the object.This award supports theoretical and computational research aimed at understanding a new regime relevant to Listeria, Caulobacter and Vibrio, in which the particle surface catalyzes self-assembly or disassembly rather than a chemical reaction involving simple ions or molecules. Questions to be addressed include: Can the mechanism of self-diffusiophoresis explain effects of biological perturbations that have been studied experimentally? Does it suffice to produce an asymmetric concentration profile of a solute when the solute is large and has an effectively vanishing diffusion constant, as in the biological examples? How does self-diffusiophoresis differ in the advection and diffusion-dominated regimes? Might motility driven by self-assembly and disassembly of filaments be more robust to opposing forces than motility driven by chemical reactions involving simple solutes?The project will train students at the interface of physics and biology to combine biophysics and far-from-equilibrium physics, two areas that have been identified as grand challenges for condensed matter and materials physics in the NRC CMMP-2010 study. Students will be trained both in interdisciplinary model-building and in computational methods, providing versatility for their entry into the workforce.Nontechnical SummaryThe Division of Materials Research and the Division of Molecular and Cellular Biosciences contribute funds to this award. This award supports theoretical and computational research designed to understand how certain living organisms - particularly bacteria or components within bacteria such as chromosomes - propel themselves. Such organisms live in a fluid environment so they must swim. Bacteria such as Listeria monocytogenes, responsible for listeriosis, generate branched filaments at their rear that propel them forward so that they can infect other cells, while chromosomes in Vibrio cholera, responsible for cholera, disassemble protein filaments in front of them in order to move across the cell before the cell divides. It is known that micron-sized particles that are coated on one side with a chemical reaction enabling material such as platinum can propel themselves through a fluid by enabling a chemical reaction at the surface. In that case, an interaction between the product or reactant and the particle surface drives fluid flow that ultimately propels the particles forward. But the interplay of filament assembly and disassembly on fluid flow is very different from that of simple chemical reactions with fluid flow. The aim of this research is to understand the physical mechanism by which the assembly or disassembly of filaments can drive motion, and to explore whether such locomotion might be more robust to physical and biochemical perturbations than the simple reaction-driven locomotion that has been studied in the materials community.Filament-assembly-driven propulsion is key to many immune processes in living organisms, including how immune cells move, how cancer cells spread and how cells migrate during wound healing. A better understanding of the physical mechanism underlying how these cells move may be important to developing ways of helping or hindering them. These biological realizations, which have evolved to be remarkably robust, may also inspire better motile materials such as micro- or nano-swimmers that can move forwards against large opposing forces and may be useful for applications including drug delivery.This award will prepare graduate students for rapidly evolving challenges in the workforce by training them in model-building and computational methods at the intersection of the physical and life sciences. The exposure to different fields and opportunity to work directly with biologists as well as theoretical, computational and experimental physicists will prepare them to collaborate and communicate effectively with colleagues with very different areas of expertise.
技术摘要材料研究部和分子和细胞生物科学部为该奖项提供资金。该奖项支持理论和计算研究和教育,以了解生物体推动自己的物理机制。某些能动的生物体,如单核细胞增多性李斯特菌(Listeria monocytogenes)和不对称细菌(如新月柄杆菌(Caulobacter crescentus)和霍乱弧菌(Vibrio cholesterol))中的染色体复制,通过聚合或解聚蛋白质丝来产生推进力。这在蛋白质中建立了浓度梯度,使得物体的一侧比另一侧有更多的细丝。一种胶体,如果其周围的小分子溶质浓度不对称,它就会以一个明确的速度推动自己通过流体。 这种现象被称为自扩散电泳,已被用作微或纳米游泳者的推进手段。 在一个典型的例子中,浓度梯度由胶体上催化化学反应的活性区控制,导致活性区附近的产物比胶体远侧的产物多,反应物少。溶质在胶体周围的分布是由扩散和平流共同决定的。胶体和溶质之间的相互作用建立了最终推动颗粒的流体流动。如果溶质很小,因此与平流相比,其扩散很快,已知仅需要两个条件即可实现运动性:运动物体必须能够在稳定状态下保持不对称的溶质分布,并且溶质和物体之间必须存在净相互作用。该奖项支持旨在理解李斯特菌相关新机制的理论和计算研究,柄杆菌和弧菌,其中颗粒表面催化自组装或分解,而不是涉及简单离子或分子的化学反应。 要解决的问题包括:自扩散电泳的机制可以解释生物扰动的影响,已被实验研究?当溶质很大并且扩散常数有效地为零时,就像在生物学的例子中那样,产生溶质的不对称浓度分布就足够了吗? 在平流和扩散主导的情况下,自扩散泳动有何不同?由细丝的自组装和分解驱动的运动性是否比由涉及简单溶质的化学反应驱动的运动性更能抵抗相反的力?该项目将培养学生在物理学和生物学的接口,结合联合收割机生物物理学和远离平衡物理学,这两个领域已被确定为凝聚态和材料物理学在NRC CMMP-2010研究的巨大挑战。学生将接受跨学科建模和计算方法的培训,为他们进入劳动力市场提供多功能性。非技术性摘要材料研究部和分子与细胞生物科学部为该奖项提供资金。该奖项支持理论和计算研究,旨在了解某些生物体-特别是细菌或细菌内的成分,如染色体-如何推动自己。 这些生物生活在一个流动的环境中,所以它们必须游泳。 细菌如单核细胞增生李斯特菌(Listeria monocytogenes),负责霍乱,在它们的后部产生分支细丝,推动它们向前,以便它们可以感染其他细胞,而霍乱弧菌(Vibrio cholera)中的染色体,负责霍乱,在它们前面分解蛋白质细丝,以便在细胞分裂之前穿过细胞。 已知的是,在一侧上涂覆有化学反应使能材料(例如铂)的微米尺寸的颗粒可以通过使能表面处的化学反应来推动它们自身通过流体。 在这种情况下,产物或反应物与颗粒表面之间的相互作用驱动最终推动颗粒向前的流体流动。 但是细丝组装和拆卸对流体流动的相互作用与简单的化学反应对流体流动的相互作用有很大的不同。 这项研究的目的是了解细丝组装或拆卸可以驱动运动的物理机制,并探索这种运动是否可能比材料界研究的简单反应驱动的运动更强大。细丝组装驱动的推进是生物体中许多免疫过程的关键,包括免疫细胞如何运动,癌细胞如何扩散以及伤口愈合期间细胞如何迁移。 更好地理解这些细胞如何运动的物理机制可能对开发帮助或阻碍它们的方法很重要。 这些生物学上的实现,已经进化得非常强大,也可能激发更好的运动材料,如微或纳米游泳者,可以对抗大的相反力量向前移动,并可能用于包括药物输送在内的应用。该奖项将通过培训研究生模型,为他们应对劳动力中快速变化的挑战做好准备。建筑和计算方法在物理和生命科学的交叉点。 接触不同的领域和直接与生物学家以及理论,计算和实验物理学家合作的机会将使他们能够与具有不同专业领域的同事进行有效的合作和沟通。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Liu其他文献
Identifying microscopic factors that influence ductility in disordered solids
识别影响无序固体延展性的微观因素
- DOI:
10.1073/pnas.2307552120 - 发表时间:
2023 - 期刊:
- 影响因子:11.1
- 作者:
Hongyi Xiao;Ge Zhang;Entao Yang;Robert J. S. Ivancic;S. Ridout;Robert A. Riggleman;D. Durian;Andrea Liu - 通讯作者:
Andrea Liu
3214 – AGE-RELATED CHANGES IN HEMATOPOIETIC STEM CELL PROTEOSTASIS PROMOTE THE EMERGENCE OF CLONAL HEMATOPOIESIS
- DOI:
10.1016/j.exphem.2024.104534 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Fanny Zhou;Helen Wang;Wei Yang;Michelle Le;Andrea Liu;Mary Jean Sunshine;Jeffrey Magee;Robert Signer - 通讯作者:
Robert Signer
3102 – HSF1 PROMOTES ACUTE MYELOID LEUKEMIA PROGRESSION AND DRUG RESISTANCE BY ATTENUATING ACTIVATION OF A TERMINAL UNFOLDED PROTEIN RESPONSE
- DOI:
10.1016/j.exphem.2024.104424 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Yoon Joon Kim;Kentson Lam;Carlo Ong;Andrea Liu;Fanny Zhou;Robert Signer - 通讯作者:
Robert Signer
Temporal variability in the stable carbon and nitrogen isotope values from common mid-trophic level species in the Bering Sea
白令海常见中营养级物种稳定碳和氮同位素值的时间变化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Andrea Liu - 通讯作者:
Andrea Liu
Disrupting Autophagy Sensitizes Human Acute Myeloid Leukemia Cells to Proteasome Inhibition By Disrupting Protein Homeostasis
- DOI:
10.1182/blood-2023-182149 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Kentson Lam;Yoon Joon Kim;Carlo M. Ong;Andrea Liu;Bernadette Chua;Jie-Hua Zhou;Edward D. Ball;Robert Signer - 通讯作者:
Robert Signer
Andrea Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Liu', 18)}}的其他基金
Theoretical Studies of Tunable Networks
可调谐网络的理论研究
- 批准号:
2005749 - 财政年份:2021
- 资助金额:
$ 54.5万 - 项目类别:
Continuing Grant
Theoretical Studies of Mechanics in Active Matter
活性物质力学的理论研究
- 批准号:
1506625 - 财政年份:2015
- 资助金额:
$ 54.5万 - 项目类别:
Continuing Grant
Statistical Physics of Disordered and Driven Systems
无序和驱动系统的统计物理
- 批准号:
0605044 - 财政年份:2006
- 资助金额:
$ 54.5万 - 项目类别:
Continuing Grant
Self-assembly of Charged Biopolymers in Solution
带电生物聚合物在溶液中的自组装
- 批准号:
0613331 - 财政年份:2005
- 资助金额:
$ 54.5万 - 项目类别:
Continuing Grant
Self-assembly of Charged Biopolymers in Solution
带电生物聚合物在溶液中的自组装
- 批准号:
0096492 - 财政年份:2001
- 资助金额:
$ 54.5万 - 项目类别:
Continuing Grant
Jamming in Model Supercooled Liquids and Athermal Systems
模型过冷液体和无热系统中的干扰
- 批准号:
0087349 - 财政年份:2000
- 资助金额:
$ 54.5万 - 项目类别:
Continuing Grant
Chain Structure and Counterion Condensation in Solutions of Flexible Polyelectrolyte Chains
柔性聚电解质链溶液中的链结构和反离子缩合
- 批准号:
9619277 - 财政年份:1997
- 资助金额:
$ 54.5万 - 项目类别:
Standard Grant
Theoretical Studies of Near-Critical Fluids in Dilute Porous Media
稀多孔介质中近临界流体的理论研究
- 批准号:
9624090 - 财政年份:1996
- 资助金额:
$ 54.5万 - 项目类别:
Continuing Grant
相似国自然基金
ENKD1在纺锤体定向中的作用及分子机制
- 批准号:32000490
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
- 批准号:31970660
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
早型星系的测光研究
- 批准号:10973011
- 批准年份:2009
- 资助金额:50.0 万元
- 项目类别:面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
- 批准号:20973136
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
功能有机配体新颖设计与有机金属超分子导向组装
- 批准号:20772152
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
- 批准号:
10405097 - 财政年份:2021
- 资助金额:
$ 54.5万 - 项目类别:
Self-assembled DNA elastic networks for measuring membrane tension in live cells
用于测量活细胞膜张力的自组装 DNA 弹性网络
- 批准号:
10196486 - 财政年份:2021
- 资助金额:
$ 54.5万 - 项目类别:
Self-nonself recognition and multicellularity in myxobacteria: Equipment supplement
粘细菌的自我非自我识别和多细胞性:设备补充
- 批准号:
10798701 - 财政年份:2021
- 资助金额:
$ 54.5万 - 项目类别:
Self-nonself recognition and multicellularity in myxobacteria
粘细菌的自我非自我识别和多细胞性
- 批准号:
10597640 - 财政年份:2021
- 资助金额:
$ 54.5万 - 项目类别:
One Way Micropatterns for Self-Assembly and Sorting of Cells
用于细胞自组装和分选的单向微图案
- 批准号:
7767586 - 财政年份:2010
- 资助金额:
$ 54.5万 - 项目类别:
One Way Micropatterns for Self-Assembly and Sorting of Cells
用于细胞自组装和分选的单向微图案
- 批准号:
8214559 - 财政年份:2010
- 资助金额:
$ 54.5万 - 项目类别:
One Way Micropatterns for Self-Assembly and Sorting of Cells
用于细胞自组装和分选的单向微图案
- 批准号:
8432764 - 财政年份:2010
- 资助金额:
$ 54.5万 - 项目类别:
One Way Micropatterns for Self-Assembly and Sorting of Cells
用于细胞自组装和分选的单向微图案
- 批准号:
8013525 - 财政年份:2010
- 资助金额:
$ 54.5万 - 项目类别:
Role of fibronectin in vascular plexus self-organization during embryogenesis
纤连蛋白在胚胎发生过程中血管丛自组织中的作用
- 批准号:
7582334 - 财政年份:2007
- 资助金额:
$ 54.5万 - 项目类别: