The Distribution of Values of Mahler

马勒的价值观分布

基本信息

  • 批准号:
    0088915
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

Abstract for proposal 0088915The primary objective of this research is to develop a new analytic method for investigating certain types of height functions. The main height function considered by the principal investigator is the Mahler measure. Traditionally, the Mahler measure of a monic polynomial with complex coefficients is the product of the absolute values of those roots of the polynomial which occur outside the closed unit disk. In the present context, however, it is convenient to regard the Mahler measure as a distance function on a real or complex Euclidean space. More precisely, a vector in Euclidean space is identified with the vector of coefficients of a polynomial and so the Mahler measure of the vector is simply the Mahler measure of the corresponding polynomial. Viewed in this way the Mahler measure is a continuous function and homogeneous of degree 1. That is, the Mahler measure is a distance function in the sense of the geometry of numbers. Also, the Lebesgue measure of the set of points in Euclidean space where the Mahler measure is less than a real parameter, is a distribution function of the parameter. This distribution function is then subject to analysis by means of the Mellin (or Fourier) transform. Although the Mahler measure is a very complicated function of the coordinates of a vector, the distribution function is shown to be surprisingly simple. In particular, the principal investigator observes several unexpected arithmetical properties of natural geometric objects associated to the Mahler measure. For example, the volume of the unit ball with respect to the Mahler measure is a rational number. And the surface of the unit ball can be parameterized by polynomial maps with integer coefficients. The principal investigator hopes to attack the well known conjecture of D.H. Lehmer concerning small values of Mahler's measure by a modification of the methods described here. A further project is to discover analogous results for the elliptic Mahler measure.The Mahler measure is a technical tool used in a variety of investigations in analytic and algebraic number theory. And it has practical importance in certain computer algorithms for factoring large polynomials. This is because the Mahler measure of a polynomial gives information about the number of irreducible factors of the polynomial, and so immediately provides a limit to the complexity of any factoring algorithm. Polynomials form a very basic and important class of mathematical objects which appear in a wide variety of applications. The Mahler measure of a polynomial gives useful information about the polynomial, but its precise usefulness depends on the particular application. For example, the Mahler measure can be used to determine the entropy (a rough measure of complicatedness) of certain dynamical systems. The research of the principal investigator is motivated by a desire to better understand the Mahler measure and also to seek new applications in number theory and in applied mathematics.
提案摘要 0088915 这项研究的主要目标是开发一种新的分析方法来研究某些类型的高度函数。 首席研究员考虑的主要高度函数是马勒测度。 传统上,具有复系数的一元多项式的马勒测度是出现在闭合单位圆盘外部的多项式根的绝对值的乘积。 然而,在当前上下文中,将马勒测度视为实数或复数欧几里德空间上的距离函数是很方便的。 更准确地说,欧几里得空间中的向量可以用多项式的系数向量来标识,因此向量的马勒测度就是相应多项式的马勒测度。 从这个角度来看,马勒测度是一个连续函数,并且是 1 次齐次的。也就是说,马勒测度是数几何意义上的距离函数。 此外,欧几里德空间中马勒测度小于实参数的点集的勒贝格测度是该参数的分布函数。 然后通过梅林(或傅里叶)变换对该分布函数进行分析。 尽管马勒测度是一个非常复杂的矢量坐标函数,但分布函数却出奇地简单。 特别是,首席研究员观察到与马勒测度相关的自然几何对象的几个意想不到的算术属性。 例如,单位球的体积相对于马勒度量是有理数。 单位球的表面可以通过具有整数系数的多项式映射来参数化。 首席研究员希望通过修改此处描述的方法来攻击 D.H. Lehmer 关于马勒测度小值的众所周知的猜想。 进一步的项目是发现椭圆马勒测度的类似结果。马勒测度是一种用于解析和代数数论的各种研究的技术工具。 它在某些用于分解大型多项式的计算机算法中具有实际重要性。 这是因为多项式的马勒测度给出了有关多项式不可约因子数量的信息,因此立即限制了任何因式分解算法的复杂性。 多项式是一类非常基本且重要的数学对象,它出现在各种各样的应用中。 多项式的马勒测度提供了有关多项式的有用信息,但其精确的有用性取决于特定的应用。 例如,马勒测度可用于确定某些动力系统的熵(复杂性的粗略测度)。 首席研究员的研究动机是希望更好地理解马勒测度并寻求数论和应用数学的新应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Vaaler其他文献

Jeffrey Vaaler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Vaaler', 18)}}的其他基金

Heights, Mahler Measure and Diophantine Inequalities
高度、马勒测量和丢番图不等式
  • 批准号:
    0603282
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
New Bounds for Automorphic L-Functions
自同构 L 函数的新界限
  • 批准号:
    0503804
  • 财政年份:
    2005
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Effective Measures of Irrationality for Algebraic Numbers
数学科学:代数数无理性的有效度量
  • 批准号:
    9622556
  • 财政年份:
    1996
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Diophantine Equations, Diophantine Approximation and Geometry
数学科学:丢番图方程、丢番图近似和几何
  • 批准号:
    8701396
  • 财政年份:
    1987
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Diophantine Approximation and Diophantine Equations
数学科学:丢番图近似和丢番图方程
  • 批准号:
    8501941
  • 财政年份:
    1985
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Linear Forms and Diophantine Approximation
数学科学:线性形式和丢番图近似
  • 批准号:
    8303309
  • 财政年份:
    1983
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Summer Conference on Analytic Number Theory; Austin, Texas; June 1 - July 9, 1982 (Mathematical Sciences)
解析数论夏季会议;
  • 批准号:
    8204205
  • 财政年份:
    1982
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Probabilistic Methods in Diophantine Approximation
丢番图近似中的概率方法
  • 批准号:
    8002249
  • 财政年份:
    1980
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Uniform Distribution of P-Adic and G-Adic Sequences
P-Adic 和 G-Adic 序列的均匀分布
  • 批准号:
    7701830
  • 财政年份:
    1977
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Building Desirable and Resilient Public Media Futures: Establishing the Centre for Public Values, Technology & Society
建设理想且有弹性的公共媒体未来:建立公共价值观和技术中心
  • 批准号:
    MR/X033651/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
  • 批准号:
    2348334
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Restoring & future-proofing the biocultural values of endangered seagrasses
正在恢复
  • 批准号:
    LP220200950
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Linkage Projects
Investigating the archaeological values of Marra cultural heritage sites
调查马拉文化遗产地的考古价值
  • 批准号:
    LP220100143
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Linkage Projects
若者支援/Youth Work/Informal教育のCore Values共有化の方法をめぐる国際共同研究
国际联合研究共享青年支持/青年工作/非正式教育核心价值观的方法
  • 批准号:
    24K00379
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
U.S. participation in the 8th wave of the World Values Survey
美国参与第八波世界价值观调查
  • 批准号:
    2331175
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
DEVAL - Democratic Values and Authoritarian Legitimacy
DEVAL - 民主价值观和威权合法性
  • 批准号:
    EP/Y036832/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
The influence of ethical and social values on decision-making about participation in personalized breast cancer screening: A constructivist grounded theory study of South Asian people in Canada
伦理和社会价值观对参与个性化乳腺癌筛查决策的影响:针对加拿大南亚人的建构主义扎根理论研究
  • 批准号:
    491227
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship Programs
Development of the assessment method to quantify the physical coordination ability of children: through the evaluation using muscle coherence values.
量化儿童身体协调能力的评估方法的开发:通过肌肉一致性值的评估。
  • 批准号:
    23K10740
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The dawn of modular phenomena for higher level multiple zeta values with a new development on multiple Eisenstein series
随着多个爱森斯坦级数的新发展,更高水平的多个 zeta 值的模块化现象的曙光
  • 批准号:
    23K03034
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了