New Bounds for Automorphic L-Functions

自同构 L 函数的新界限

基本信息

  • 批准号:
    0503804
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

The principal investigator intends to prove new subconvex bounds for automorphic L-functions or improve on existing subconvex bounds. Such bounds reflect the arithmetic nature of their source objects as they cannot be derived from simple analytic principles. In return, they provide the key to the solution of several deep diophantine problems addressing equidistribution phenomena. Proving these bounds unconditionally also sheds light on the Generalized Riemann Hypothesis as they are consequences of it. In the focus of the proposal are families of GL(2) x GL(1) and GL(2) x GL(2) type. The techniques leading to subconvex bounds for these families have so far been restricted to the field of rational numbers or holomorphic forms. The principal investigator will try to extend these techniques to totally real number fields and non-holomorphic forms.This proposal belongs to the theory of integers. Because of their fundamental character, integers are at the source of many theoretical and practical constructions including algorithms for secure communication through the internet or efficient communication through a noisy channel. Automorphic forms and their L-functions are among the mathematical objects that make the hidden symmetries of integers visible. It has been observed, but not proved rigorously in a single instance, that the zeros of every automorphic L-function are distributed in a very special way. This observation is the Generalized Riemann Hypothesis which implies many otherwise unknown properties of the integers. For various important questions a weaker hypothesis, concerning the size of L-functions, suffices. The principal investigator intends to prove new instances of this weaker hypothesis.
本课题旨在证明自同构l函数的新的次凸界或改进现有的次凸界。这种界限反映了它们的源对象的算术性质,因为它们不能从简单的分析原理推导出来。作为回报,它们提供了解决几个涉及平均分配现象的深层丢芬图问题的关键。无条件地证明这些边界也有助于阐明广义黎曼假设,因为它们是广义黎曼假设的结果。提案的重点是GL(2) x GL(1)和GL(2) x GL(2)类型的家族。迄今为止,导致这些族的次凸界的技术仅限于有理数或全纯形式的领域。首席研究员将尝试将这些技术扩展到全实数域和非全纯形式。这个建议属于整数理论。由于整数的基本特性,它是许多理论和实践结构的源泉,包括通过互联网进行安全通信或通过噪声信道进行有效通信的算法。自同构形式及其l -函数是使整数的隐藏对称性可见的数学对象之一。每个自同构l函数的零点都以一种非常特殊的方式分布,这已经被观察到,但没有在单个实例中得到严格证明。这个观察就是广义黎曼假设,它暗示了整数的许多其他未知性质。对于许多重要的问题,一个较弱的假设,关于l函数的大小,就足够了。首席研究员打算证明这个较弱的假设的新实例。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Vaaler其他文献

Jeffrey Vaaler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Vaaler', 18)}}的其他基金

Heights, Mahler Measure and Diophantine Inequalities
高度、马勒测量和丢番图不等式
  • 批准号:
    0603282
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The Distribution of Values of Mahler
马勒的价值观分布
  • 批准号:
    0088915
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Effective Measures of Irrationality for Algebraic Numbers
数学科学:代数数无理性的有效度量
  • 批准号:
    9622556
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Diophantine Equations, Diophantine Approximation and Geometry
数学科学:丢番图方程、丢番图近似和几何
  • 批准号:
    8701396
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Diophantine Approximation and Diophantine Equations
数学科学:丢番图近似和丢番图方程
  • 批准号:
    8501941
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Linear Forms and Diophantine Approximation
数学科学:线性形式和丢番图近似
  • 批准号:
    8303309
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Summer Conference on Analytic Number Theory; Austin, Texas; June 1 - July 9, 1982 (Mathematical Sciences)
解析数论夏季会议;
  • 批准号:
    8204205
  • 财政年份:
    1982
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Probabilistic Methods in Diophantine Approximation
丢番图近似中的概率方法
  • 批准号:
    8002249
  • 财政年份:
    1980
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Uniform Distribution of P-Adic and G-Adic Sequences
P-Adic 和 G-Adic 序列的均匀分布
  • 批准号:
    7701830
  • 财政年份:
    1977
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
  • 批准号:
    2338730
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Complexity Lower Bounds from Expansion
扩展带来的复杂性下限
  • 批准号:
    23K16837
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
  • 批准号:
    2311072
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Branching Program Lower Bounds
分支程序下界
  • 批准号:
    RGPIN-2019-06288
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Tighter error bounds for representation learning and lifelong learning
表征学习和终身学习的更严格的误差范围
  • 批准号:
    RGPIN-2018-03942
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: New Techniques for Optimal Bounds on MCMC Algorithms
AF:小:MCMC 算法最优边界的新技术
  • 批准号:
    2147094
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
  • 批准号:
    RGPIN-2019-05543
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Extremal Combinatorics Exact Bounds
极值组合精确界
  • 批准号:
    574168-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
  • 批准号:
    558713-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
  • 批准号:
    567959-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了