Computational Inference, Monte Carlo, and Scientific Applications
计算推理、蒙特卡洛和科学应用
基本信息
- 批准号:0090166
- 负责人:
- 金额:$ 51.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-01-01 至 2004-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Computational inference, Monte Carlo methods, and scientific applicationsWith the advent of automated, high-throughput experimental protocols and data collection techniques, research and discoveries in many areas of science and technology have become increasingly data driven and computation intensive. The applications motivating the research in this project arise from molecular biology, biotechnology and neural science. The rapid accumaulation of experimental data in these areas have outstriped scientists' ability to analyze them, and advanced statistical methods are needed to automate the analysis process and to exploit the complex data structure and extensive scientific knowledge underlying such studies. Computational inference refers to statistical modeling and inference procedures that rely on intensive computation to extract information from large scale data and knowledge-based models. The board, long term goal of this project is to advance the methodologies of computational inference and apply them towards the solution of several important problems in the aforementioned scientific areas. A critical step in almost all large scale computational inference procedure is the study of the posterior density through Monte Carlo sampling (or the related problem of studying the likelihood function). Successful sampling leads immediately to the inference of any parameter or prediction of interest to the investigator. Thus the first specific goal of this project is to develop Monte Carlo simulation methods that are effective in sampling complex, multimodal distributions. Advances in this core computational problem will not only facilitate effective computational inference, but will also be of interest to other scientific tasks such as simulation of molecular structures and combinatorial optimization. Three approaches will be investigated: a) an evolutionary Monte Carlo approach where a population of structures are evolved and individual structures, including recombinant ones, are continuously competing for survival in the population, b) further development of sequential importance sampling and dynamic importance sampling through better methods to handle skewed weight distributions, c) multi-level computational models. Hybrid algorithms combining the above approaches will also be investigated. Some of these methods will be used to investigate the grand-challenge problem of understanding the energy landscape of protein conformation. The second specific goal of this project is the development of computational inference tools for two further scientifc problems: i) multiple alignment and clustering of DNA and protein sequences based on hidden Markov models, and the use of these in the analysis of human genome coding regions, ii) the development of hierarchical computational models for low-level vision task such as texture recognition and primal sketching. If successful, the methods developed in this project will enable the wider application of computational inference and will also result in direct contributions to three problems of considerable importance in the current scientific frontier.
随着自动化、高通量实验协议和数据收集技术的出现,许多科学和技术领域的研究和发现已经变得越来越数据驱动和计算密集型。推动该项目研究的应用来自分子生物学、生物技术和神经科学。这些领域实验数据的快速积累已经超出了科学家分析它们的能力,需要先进的统计方法来实现分析过程的自动化,并利用这些研究背后的复杂数据结构和广泛的科学知识。计算推理是指依靠密集的计算从大规模数据和基于知识的模型中提取信息的统计建模和推理过程。本项目的长期目标是推进计算推理方法,并将其应用于解决上述科学领域中的几个重要问题。在几乎所有大规模计算推断过程中,一个关键步骤是通过蒙特卡罗抽样研究后验密度(或研究似然函数的相关问题)。成功的抽样可以立即推断出调查者感兴趣的任何参数或预测。因此,这个项目的第一个具体目标是开发在抽样复杂的多峰分布时有效的蒙特卡罗模拟方法。这一核心计算问题的进展不仅将促进有效的计算推理,而且还将对其他科学任务感兴趣,如分子结构模拟和组合优化。将研究三种方法:a)进化蒙特卡罗方法,其中结构种群被进化,个体结构,包括重组结构,在种群中不断地竞争生存;b)通过更好地处理偏态权重分布的方法,进一步发展序贯重要性抽样和动态重要性抽样;c)多水平计算模型。结合上述方法的混合算法也将被研究。其中一些方法将被用来研究理解蛋白质构象的能量景观这一重大挑战问题。这个项目的第二个具体目标是为两个进一步的科学问题开发计算推理工具:i)基于隐马尔可夫模型的DNA和蛋白质序列的多重比对和聚类,并将其用于人类基因组编码区的分析;ii)开发用于纹理识别和原始草图等低级别视觉任务的分层计算模型。如果成功,该项目开发的方法将使计算推理得到更广泛的应用,并将对当前科学前沿中相当重要的三个问题做出直接贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wing Hung Wong其他文献
Modeling combinatorial regulation from single-cell multi-omics provides regulatory units underpinning cell type landscape using cRegulon
- DOI:
10.1186/s13059-025-03680-w - 发表时间:
2025-07-24 - 期刊:
- 影响因子:9.400
- 作者:
Zhanying Feng;Xi Chen;Zhana Duren;Jingxue Xin;Hao Miao;Qiuyue Yuan;Yong Wang;Wing Hung Wong - 通讯作者:
Wing Hung Wong
Time course regulatory analysis based on paired expression and chromatin accessibility data
- DOI:
http://www.genome.org/cgi/doi/10.1101/gr.257063.119 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Zhana Duren;Xi Chen;Jingxue Xin;Yong Wang;Wing Hung Wong - 通讯作者:
Wing Hung Wong
EpiGePT: a pretrained transformer-based language model for context-specific human epigenomics
- DOI:
10.1186/s13059-024-03449-7 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:9.400
- 作者:
Zijing Gao;Qiao Liu;Wanwen Zeng;Rui Jiang;Wing Hung Wong - 通讯作者:
Wing Hung Wong
Simultaneous deep generative modelling and clustering of single-cell genomic data
单细胞基因组数据的同时深度生成建模与聚类
- DOI:
10.1038/s42256-021-00333-y - 发表时间:
2021-05-10 - 期刊:
- 影响因子:23.900
- 作者:
Qiao Liu;Shengquan Chen;Rui Jiang;Wing Hung Wong - 通讯作者:
Wing Hung Wong
Author Correction: Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG
- DOI:
10.1186/s13059-022-02786-9 - 发表时间:
2022-10-13 - 期刊:
- 影响因子:9.400
- 作者:
Zhana Duren;Fengge Chang;Fnu Naqing;Jingxue Xin;Qiao Liu;Wing Hung Wong - 通讯作者:
Wing Hung Wong
Wing Hung Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wing Hung Wong', 18)}}的其他基金
New algorithms for Bayesian Computation
贝叶斯计算的新算法
- 批准号:
2310788 - 财政年份:2023
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Generative Learning on Unstructured Data with Applications to Natural Language Processing and Hyperlink Prediction
FRG:协作研究:非结构化数据的生成学习及其在自然语言处理和超链接预测中的应用
- 批准号:
1952386 - 财政年份:2020
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
Efficient Monte Carlo Algorithms for Bayesian Inference
用于贝叶斯推理的高效蒙特卡罗算法
- 批准号:
1811920 - 财政年份:2018
- 资助金额:
$ 51.45万 - 项目类别:
Continuing Grant
Collaborative Research: Automatic Video Interpretation and Description
合作研究:自动视频解释和描述
- 批准号:
1721550 - 财政年份:2017
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
Statistical learning via multivariate density estimation
通过多元密度估计进行统计学习
- 批准号:
1407557 - 财政年份:2014
- 资助金额:
$ 51.45万 - 项目类别:
Continuing Grant
EAGER: Algorithm-Hardware Co-Design for Multivariate Data Analysis
EAGER:用于多元数据分析的算法-硬件协同设计
- 批准号:
1330132 - 财政年份:2013
- 资助金额:
$ 51.45万 - 项目类别:
Continuing Grant
Monte Carlo and reconfigurable computing in Bayesian inference
贝叶斯推理中的蒙特卡洛和可重构计算
- 批准号:
0906044 - 财政年份:2009
- 资助金额:
$ 51.45万 - 项目类别:
Continuing Grant
Infrastructure for computing with massive datasets in modern statistics
现代统计中海量数据集的计算基础设施
- 批准号:
0821823 - 财政年份:2008
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
Evolutionary and energy-domain Monte Carlo algorithms and their applications
演化和能量域蒙特卡罗算法及其应用
- 批准号:
0505732 - 财政年份:2005
- 资助金额:
$ 51.45万 - 项目类别:
Continuing Grant
Protein Fold Modeling and Recognition From Multiple Structures
多种结构的蛋白质折叠建模和识别
- 批准号:
0196176 - 财政年份:2000
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
相似海外基金
Advanced Monte Carlo methods for inference and model selection of dynamic systems
用于动态系统推理和模型选择的高级蒙特卡罗方法
- 批准号:
559741-2021 - 财政年份:2022
- 资助金额:
$ 51.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2022
- 资助金额:
$ 51.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Advanced Monte Carlo methods for inference and model selection of dynamic systems
用于动态系统推理和模型选择的高级蒙特卡罗方法
- 批准号:
559741-2021 - 财政年份:2021
- 资助金额:
$ 51.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
- 批准号:
2220840 - 财政年份:2021
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2021
- 资助金额:
$ 51.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2020
- 资助金额:
$ 51.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
RI: Small: Frontiers in Monte Carlo and Variational Inference
RI:小:蒙特卡罗和变分推理的前沿
- 批准号:
1908577 - 财政年份:2019
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
- 批准号:
1854662 - 财政年份:2019
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
- 批准号:
1854667 - 财政年份:2019
- 资助金额:
$ 51.45万 - 项目类别:
Standard Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2019
- 资助金额:
$ 51.45万 - 项目类别:
Postgraduate Scholarships - Doctoral