New algorithms for Bayesian Computation

贝叶斯计算的新算法

基本信息

  • 批准号:
    2310788
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Bayesian statistics is a highly principled approach to learn about unknown parameters and variables based on observed data. In this approach, existing knowledge about the unknown parameters is represented by the prior distribution. Once new data has been observed, then the prior distribution is updated by the Bayes formula to produce the posterior distribution which represents the updated knowledge about the parameter. Detailed information about the parameters of interest is usually obtained from the posterior distribution through computational inference methods such as Markov Chain Monte Carlo or Importance Sampling. However, these computational inference methods can become inefficient in some situations, such as when the likelihood function is too expensive to evaluate, or when the statistical model is given as a generative model without an explicit likelihood and can only be used to simulate the data. The goal of this project is to develop approaches to Bayesian inference that remain computationally efficient in these situations. The results will enable wider use of Bayesian methods in many areas of science and technology. The project will also contribute to the training of graduate students through their involvement in the performance of the research.Specifically, this project will create new computational tools to address two issues that are challenging for current algorithms, namely, how to sample from the posterior distribution in Hidden Markov Models with continuous variables, and how to design sequential methods for simulation from the posterior distribution even when the likelihood function is not available. Hidden Markov Models are widely used in the engineering and biological sciences, but currently algorithms for Bayesian inference in this model are available only if the variables involved are discrete variables. By creating efficient algorithms for the continuous case, the results of this project will enable engineers and computational biologists to apply these models to a much wider range of problems. The second goal of this project is to develop new tools for approximate Bayesian computation in models with intractable or unknown likelihood functions. These models can arise from many scientific areas such as phylogenetics and computer-based experiments. Currently there is only one available algorithm (the ABC algorithm) for Bayesian inference on this type of models. By developing an extension that can greatly improve the computational efficiency of this algorithm, the research in this project will benefit the aforementioned scientific areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
贝叶斯统计学是一种基于观测数据了解未知参数和变量的高度原则性的方法。在该方法中,未知参数的现有知识由先验分布表示。一旦观察到新数据,则通过贝叶斯公式更新先验分布,以产生表示关于参数的更新知识的后验分布。关于感兴趣的参数的详细信息通常是通过计算推断方法从后验分布中获得的,例如马尔可夫链、蒙特卡罗或重要性抽样。然而,这些计算推理方法在某些情况下可能会变得效率低下,例如当似然函数太昂贵而无法评估时,或者当统计模型作为没有显式似然的生成性模型给出并且只能用于模拟数据时。这个项目的目标是开发在这些情况下保持计算效率的贝叶斯推理方法。这一结果将使贝叶斯方法在许多科学和技术领域得到更广泛的使用。该项目还将通过研究生参与研究的表现来帮助他们进行培训。具体地说,该项目将创建新的计算工具来解决当前算法面临的两个问题,即如何从连续变量隐马尔可夫模型的后验分布中进行采样,以及如何在似然函数不可用的情况下设计从后验分布进行模拟的序贯方法。隐马尔可夫模型在工程和生物科学中有着广泛的应用,但目前该模型中的贝叶斯推理算法只有在所涉及的变量为离散变量时才可用。通过为连续情况创建有效的算法,该项目的结果将使工程师和计算生物学家能够将这些模型应用于更广泛的问题。这个项目的第二个目标是开发新的工具,用于在具有难以处理或未知的似然函数的模型中进行近似贝叶斯计算。这些模型可以产生于许多科学领域,如系统发育学和基于计算机的实验。目前只有一种算法(ABC算法)可用于此类模型的贝叶斯推理。通过开发一种可以极大地提高该算法的计算效率的扩展,该项目的研究将使上述科学领域受益。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wing Hung Wong其他文献

Modeling combinatorial regulation from single-cell multi-omics provides regulatory units underpinning cell type landscape using cRegulon
  • DOI:
    10.1186/s13059-025-03680-w
  • 发表时间:
    2025-07-24
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Zhanying Feng;Xi Chen;Zhana Duren;Jingxue Xin;Hao Miao;Qiuyue Yuan;Yong Wang;Wing Hung Wong
  • 通讯作者:
    Wing Hung Wong
Time course regulatory analysis based on paired expression and chromatin accessibility data
  • DOI:
    http://www.genome.org/cgi/doi/10.1101/gr.257063.119
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Zhana Duren;Xi Chen;Jingxue Xin;Yong Wang;Wing Hung Wong
  • 通讯作者:
    Wing Hung Wong
EpiGePT: a pretrained transformer-based language model for context-specific human epigenomics
  • DOI:
    10.1186/s13059-024-03449-7
  • 发表时间:
    2024-12-18
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Zijing Gao;Qiao Liu;Wanwen Zeng;Rui Jiang;Wing Hung Wong
  • 通讯作者:
    Wing Hung Wong
Simultaneous deep generative modelling and clustering of single-cell genomic data
单细胞基因组数据的同时深度生成建模与聚类
  • DOI:
    10.1038/s42256-021-00333-y
  • 发表时间:
    2021-05-10
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Qiao Liu;Shengquan Chen;Rui Jiang;Wing Hung Wong
  • 通讯作者:
    Wing Hung Wong
Author Correction: Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG
  • DOI:
    10.1186/s13059-022-02786-9
  • 发表时间:
    2022-10-13
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Zhana Duren;Fengge Chang;Fnu Naqing;Jingxue Xin;Qiao Liu;Wing Hung Wong
  • 通讯作者:
    Wing Hung Wong

Wing Hung Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wing Hung Wong', 18)}}的其他基金

FRG: Collaborative Research: Generative Learning on Unstructured Data with Applications to Natural Language Processing and Hyperlink Prediction
FRG:协作研究:非结构化数据的生成学习及其在自然语言处理和超链接预测中的应用
  • 批准号:
    1952386
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Efficient Monte Carlo Algorithms for Bayesian Inference
用于贝叶斯推理的高效蒙特卡罗算法
  • 批准号:
    1811920
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Automatic Video Interpretation and Description
合作研究:自动视频解释和描述
  • 批准号:
    1721550
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Statistical learning via multivariate density estimation
通过多元密度估计进行统计学习
  • 批准号:
    1407557
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
EAGER: Algorithm-Hardware Co-Design for Multivariate Data Analysis
EAGER:用于多元数据分析的算法-硬件协同设计
  • 批准号:
    1330132
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Monte Carlo and reconfigurable computing in Bayesian inference
贝叶斯推理中的蒙特卡洛和可重构计算
  • 批准号:
    0906044
  • 财政年份:
    2009
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Infrastructure for computing with massive datasets in modern statistics
现代统计中海量数据集的计算基础设施
  • 批准号:
    0821823
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Evolutionary and energy-domain Monte Carlo algorithms and their applications
演化和能量域蒙特卡罗算法及其应用
  • 批准号:
    0505732
  • 财政年份:
    2005
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Computational Inference, Monte Carlo, and Scientific Applications
计算推理、蒙特卡洛和科学应用
  • 批准号:
    0090166
  • 财政年份:
    2001
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Protein Fold Modeling and Recognition From Multiple Structures
多种结构的蛋白质折叠建模和识别
  • 批准号:
    0196176
  • 财政年份:
    2000
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
  • 批准号:
    2890421
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
  • 批准号:
    10714225
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
developing and validating advanced Bayesian optimization algorithms
开发和验证先进的贝叶斯优化算法
  • 批准号:
    2885563
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
  • 批准号:
    10730714
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
  • 批准号:
    10665905
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了