CAREER - Random Disorder in Phase Transitions of Complex Fluids
职业 - 复杂流体相变中的随机无序
基本信息
- 批准号:0092786
- 负责人:
- 金额:$ 49.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-03-15 至 2007-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to study the nature of ordering (or disordering) interactions occuring at the interface between liquid crystals and polymeric surfaces. It will involve a systematic survey of modified phase transitions of liquid crystals and mesogenic polymers to understand the influence of the perturbations caused by the non-mesogenic material in the form of confining porous media or as colloidal dispersions. The role of topology or randomness connected with these perturbations will be studied, and the influence of randomness and boundary conditions with induced elastic deformation will be addressed. Given the experimental challenges of this project, new spectroscopic tools needed to advance calorimetric techniques necessary for studying the wide range of systems under investigation will be developed. Liquid crystal materials are important to practical applications areas that include optical displays and switches for communications, and biomedical areas such as the development of new materials classes for drug delivery. Students trained in these areas are likely to be highly competitive in future job markets.
本项目旨在研究在液晶和聚合物表面之间的界面上发生的有序(或无序)相互作用的本质。它将包括对液晶和介系聚合物的改性相变的系统调查,以了解以限制多孔介质或胶体分散形式存在的非介系材料引起的扰动的影响。将研究与这些扰动相关的拓扑或随机性的作用,并讨论随机性和边界条件对诱导弹性变形的影响。考虑到这个项目的实验挑战,新的光谱工具将被开发出来,以推进研究广泛系统所必需的量热技术。液晶材料对实际应用领域很重要,包括光学显示器和通信开关,以及生物医学领域,如开发用于药物输送的新材料。在这些领域受过训练的学生很可能在未来的就业市场上具有很强的竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Germano Iannacchione其他文献
Germano Iannacchione的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Germano Iannacchione', 18)}}的其他基金
Intergovernmental Mobility Assignment
政府间流动分配
- 批准号:
1748184 - 财政年份:2017
- 资助金额:
$ 49.97万 - 项目类别:
Intergovernmental Personnel Award
MRI: Acquisition of a Modulated Differential Scanning Calorimeter and Spectroscopic Ellipsometer for Characterizing Complex Fluids
MRI:获取调制差示扫描量热仪和光谱椭圆仪来表征复杂流体
- 批准号:
0821292 - 财政年份:2008
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Magnetic Properties of Monomolecular Langmuir-Blodgett Films of Organic Radicals
美法合作研究:有机自由基单分子 Langmuir-Blodgett 薄膜的磁性
- 批准号:
9910016 - 财政年份:2000
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
相似海外基金
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Universal approaches in random matrix theory
随机矩阵理论中的通用方法
- 批准号:
24K06766 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Fellowship
Random-field effects in spin models: Supersymmetry, criticality, and universality
自旋模型中的随机场效应:超对称性、临界性和普遍性
- 批准号:
EP/X026116/1 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Research Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 49.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry and Integrability of Random Processes
随机过程的几何和可积性
- 批准号:
2346685 - 财政年份:2023
- 资助金额:
$ 49.97万 - 项目类别:
Standard Grant