PECASE: Galois Representations and Modular Forms

PECASE:伽罗瓦表示和模形式

基本信息

项目摘要

The investigator's previous work on elliptic curves and Galois representations leads in the direction of several questions which are ultimately concerned with understanding the nature of Galois representations, either from the point of view of geometry or deformation theory. One such problem is to find a conceptual moduli-theoretic interpretation of the Coleman-Mazur eigencurve. The investigator also proposes to study the problem of incorporating conditions such as semi-stability (in the sense of Fontaine) in the deformation theory of Galois representations, continuing a line of development growing out of the work of Wiles. In a somewhat different direction, Buzzard has recently observed in numerous examples that the slopes of eigenforms seem to possess much more structure than conjectured by Gouvea-Mazur. These surprising observations do not fit into any general framework, and the investigator proposes to determine the general nature of such phenomena. In addition to studying these problems, the investigator continues his efforts in the direction of supporting active student interest in mathematics at the high school level. Through personal contacts at a local school, he arranges regular meetings in which he leads informal group discussions with students on an assortment of interesting mathematical ideas (taken from a wide variety of disciplines: number theory, geometry, probability, etc.). The idea is to expose students to important and interesting concepts which are not usually encountered in the classroom but which can be presented in an elementary context.The investigator also provides these students with information about summer math programs and research opportunities, in order that they can experience mathematics as a living field of scientific inquiry. Number theory is the branch of mathematics which is concerned with the properties of whole numbers. It abounds in deep and unsolved problems, particularly concerning properties of prime numbers and geometric objects called elliptic curves. Prime numbers and the theory of elliptic curves also lie at the heart of modern cryptographic systems, without which secure diplomatic transmissions and Internet commerce would be impossible. The RSA cryptosystem and the elliptic curve factorization algorithm are two such prominent applications in this context. Improvements in our theoretical understanding of elliptic curves is expected lead to further applications along these lines. The investigator's scientific work is concerned with several questions naturally arising from the theory of elliptic curves, and partly aims to continue the development the techniques that were used to recently settle the Shimura-Taniyama Conjecture, one of the most important problems in the theory of elliptic curves. The investigator also regularly visits with local high school students, showing them important mathematical ideas that are not usually encountered in school, such as the inner workings of the RSA cryptosystem and the role of probability in the design of medical tests for rare diseases. The investigator also provides these students with nformation about summer opportunities for education, research, and work in mathematics, and offers guidance for students who wish to take part in several prestigious high school science research competitions. The Faculty Career Development Program makes it possible for the investigator to continue his scientific work while at the same time enabling him to give some high school students a deeper appreciation for mathematics and its important role in modern society.
研究者先前关于椭圆曲线和伽罗瓦表示的工作引导了几个问题的方向,这些问题最终涉及从几何或形变理论的角度来理解伽罗瓦表示的性质。一个这样的问题是找到科尔曼-马祖尔特征曲线的概念性模理论解释。研究者还建议研究在伽罗瓦表示的形变理论中加入半稳定条件(方丹意义下)的问题,延续了Wiles工作的发展脉络。在一个略有不同的方向上,Buzzard最近在大量的例子中观察到,特征形式的斜率似乎比Gouvea-Mazur猜想的具有更多的结构。这些令人惊讶的观察结果不符合任何一般框架,研究人员建议确定此类现象的一般性质。除了研究这些问题外,调查者继续努力支持学生在高中阶段对数学产生积极的兴趣。通过在当地一所学校的私人联系,他安排定期会议,在会上他与学生就各种有趣的数学思想(来自各种学科:数论、几何、概率等)进行非正式的小组讨论。这个想法是为了让学生接触到重要而有趣的概念,这些概念通常不会在课堂上遇到,但可以在初级环境中呈现。调查者还为这些学生提供了关于暑期数学项目和研究机会的信息,以便他们能够将数学作为科学探究的活领域来体验。数论是研究整数性质的数学分支。它充满了深刻的和未解决的问题,特别是关于素数和称为椭圆曲线的几何对象的性质。素数和椭圆曲线理论也是现代密码系统的核心,没有它们,安全的外交传输和互联网贸易就不可能实现。RSA密码体制和椭圆曲线分解算法就是这方面的两个突出应用。在我们对椭圆曲线的理论理解方面的改进有望导致沿着这些线的进一步应用。研究人员的科学工作涉及椭圆曲线理论自然产生的几个问题,部分目的是继续发展最近用来解决下村-谷山猜想的技术,下村-谷山猜想是椭圆曲线理论中最重要的问题之一。研究人员还定期走访当地的高中生,向他们展示在学校里通常不会遇到的重要数学思想,如RSA密码系统的内部工作原理,以及概率在设计罕见疾病医学测试中的作用。调查员还为这些学生提供有关暑期教育、研究和数学工作机会的信息,并为希望参加几个著名的高中科学研究比赛的学生提供指导。学院职业发展计划使研究人员有可能继续他的科学工作,同时使他能够让一些高中生更深入地欣赏数学及其在现代社会中的重要作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Conrad其他文献

Brian Conrad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Conrad', 18)}}的其他基金

Problems Over Local Fields and Function Fields
局部域和函数域的问题
  • 批准号:
    1100784
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Number Theory Problems Over Local Fields and Function Fields
局部域和函数域的数论问题
  • 批准号:
    0917686
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Number Theory Problems Over Local Fields and Function Fields
局部域和函数域的数论问题
  • 批准号:
    0600919
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Deformation Rings and Group Schemes
变形环和组方案
  • 批准号:
    0096342
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Deformation Rings and Group Schemes
变形环和组方案
  • 批准号:
    9877164
  • 财政年份:
    1999
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627400
  • 财政年份:
    1996
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship Award

相似国自然基金

Hopf-Galois代数及其附加结构的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
线性码的广义pair重量、Galois对偶及相关问题研究
  • 批准号:
    12271199
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
用代数方法研究Galois自对偶码的构造和表示问题
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Theta对应与Galois周期
  • 批准号:
    11971223
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
乘子余群胚理论和代数量子群胚的双Galois理论及交叉Yetter-Drinfeld-模范畴
  • 批准号:
    11871144
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
非线性动力系统的Galois方法
  • 批准号:
    11771177
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
差分Galois理论中的算法及其应用
  • 批准号:
    11771433
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
模形式Galois表示的计算及其应用
  • 批准号:
    11601153
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Monoidal Hom-Hopf Galois扩张下的自同态Hom-代数的结构和扩张研究
  • 批准号:
    11601203
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
代数方程之Galois理论的若干历史问题研究
  • 批准号:
    11571276
  • 批准年份:
    2015
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
  • 批准号:
    2401384
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Moduli spaces of Galois representations
伽罗瓦表示的模空间
  • 批准号:
    2302619
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
  • 批准号:
    2302284
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
  • 批准号:
    2302623
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Congruences between modular forms, Galois representations, and arithmetic consequences
模形式、伽罗瓦表示和算术结果之间的同余
  • 批准号:
    2301738
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
  • 批准号:
    2302285
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
The pro-p outer Galois representations and its applications
Pro-p 外伽罗瓦表示及其应用
  • 批准号:
    23KJ1882
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Congruences of automorphic forms and Galois representations
自守形式和伽罗瓦表示的同余
  • 批准号:
    2745671
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
  • 批准号:
    RGPIN-2018-04544
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Obstructed deformation rings and modularity of Galois representations
受阻变形环和伽罗瓦表示的模块化
  • 批准号:
    2200390
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了