Moduli spaces of Galois representations
伽罗瓦表示的模空间
基本信息
- 批准号:2302619
- 负责人:
- 金额:$ 30.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Number Theory is the branch of mathematics which studies the properties and patterns of whole numbers. Despite this seemingly elementary premise, number theory has been at the the forefront of some of the most intricate structures discovered in mathematics, as well as underlying key practical applications (such as public key cryptography, which powers current secure communications over the internet). One fundamental idea of modern number theory is that collections of numbers sharing some common feature (such as being solutions of some list of equations) possess interesting emergent properties and symmetries. The most primordial of such emergent symmetry is the absolute Galois group of the rational numbers, and a large swath of number theory in the last few centuries concerns probing its (complicated) internal structure. In the 1970s, Langlands made a web of surprising predictions that this absolute Galois group is related to the (continuous) symmetry of vibrations on some highly symmetric geometric shapes (the automorphic representations). Such conjectures are known to have far reaching consequences: for instance, a proven special case was at the heart of the resolution of Fermat's Last Theorem. One promising approach to Langlands Conjectures that crystallized over the last few decades is the method of p-adic deformation, where one organizes the information on the two sides of the conjecture according to divisibility by powers of a given prime number p. The key point whose importance has only come into focus very recently is that this process reveals macroscopic/geometric features which make it easier to match the two sides, and the project aims to study exactly those features. Belonging to an emerging research direction, the project is a fertile ground for the discovery of and experimentation with new concrete phenomena, and thus create excellent opportunities for the training of students at both the graduate and undergraduate level. The PI also plans to disseminate the new geometric perspectives in the Langlands program to a broader audience through organizing summer schools and mini-courses.More specifically, the project studies the geometry of the moduli stack of representations of the Galois groups of p-adic fields, with focus on loci cut out by p-adic Hodge-theoretic conditions. These recently constructed spaces are expected to play a pivotal role in the nascent categorical p-adic Langlands program, which seeks to promote the (conjectural) relationship between individual smooth representations of p-adic Lie groups and individual local p-adic Galois representations to a relationship between the entire categories of such objects. The project aims to establish a bridge between these two categories, by relating both to categories of sheaves on some intermediate objects, moduli spaces of (semi-)linear algebraic objects, which are susceptible to analysis via methods of geometric representation theory. A sufficiently strong control on the geometry would lead to major progress on local questions such as the Breuil-Mezard conjecture as well as global questions such as Serre weight conjectures, automorphy lifting and the structure of mod p cohomology of locally symmetric spaces. The flow of information can also be reversed, namely one can predict new phenomena in geometric representation theory from arguments and heuristics with Galois representations. Furthermore, these linear algebraic moduli spaces are sufficiently concrete that one can experiment on them with computer algebra software, leading to many theoretical and computational projects accessible to undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数论是研究整数的性质和模式的数学分支。尽管这个看似基本的前提,数论一直处于数学中发现的一些最复杂结构的前沿,以及潜在的关键实际应用(例如公钥加密,它为当前互联网上的安全通信提供了动力)。现代数论的一个基本思想是,具有某些共同特征的数的集合(例如是一些方程的解)具有有趣的涌现特性和对称性。这种涌现对称性中最原始的是有理数的绝对伽罗瓦群,在过去的几个世纪里,数论的大量研究都关注于探索其(复杂的)内部结构。在20世纪70年代,朗兰兹做出了一系列令人惊讶的预测,认为这个绝对伽罗瓦群与某些高度对称几何形状(自同构表示)上振动的(连续)对称性有关。众所周知,这样的猜想会产生深远的影响:例如,一个被证明的特殊情况是解决费马大定理的核心。Langlands猜想,结晶的一种有前途的方法在过去的几十年里是p进变形的方法,其中一个组织的信息的两面猜想根据给定的力量可分性素数p。关键的重要性只有进入重点最近这个过程揭示了宏观/几何特性使双方更容易匹配,该项目旨在研究这些特性。该项目属于一个新兴的研究方向,为发现和实验新的具体现象提供了肥沃的土壤,从而为研究生和本科生的培养创造了极好的机会。PI还计划通过组织暑期学校和迷你课程,将朗兰兹项目中的新几何视角传播给更广泛的受众。更具体地说,该项目研究了p进域的伽罗瓦群表示的模堆栈的几何,重点是由p进霍奇理论条件切断的轨迹。这些最近构建的空间有望在新生的范畴p进朗兰兹程序中发挥关键作用,该程序旨在将p进李群的单个光滑表示与单个局部p进伽罗瓦表示之间的(推测)关系推广到这些对象的整个范畴之间的关系。该项目旨在建立这两个类别之间的桥梁,通过将两者与一些中间对象,(半)线性代数对象的模空间的类别联系起来,这些对象易于通过几何表示理论的方法进行分析。对几何的足够强的控制将导致局部问题如Breuil-Mezard猜想以及全局问题如Serre权猜想、自同构提升和局部对称空间的模p上同调结构的重大进展。信息流也可以被逆转,即人们可以通过伽罗瓦表示的论证和启发式来预测几何表示理论中的新现象。此外,这些线性代数模空间是足够具体的,人们可以用计算机代数软件对它们进行实验,从而导致本科生可以访问许多理论和计算项目。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bao Le Hung其他文献
VALUATIVE CRITERIA OF SEPARATEDNESS AND PROPERNESS
独立性和适当性的评价标准
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Stergios M. Antonakoudis;D. Gaitsgory;Bao Le Hung - 通讯作者:
Bao Le Hung
Bao Le Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bao Le Hung', 18)}}的其他基金
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
- 批准号:
1952678 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Moduli of Galois Representations and Applications
伽罗瓦模表示及应用
- 批准号:
1802037 - 财政年份:2018
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
相似国自然基金
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2302394 - 财政年份:2023
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2022
- 资助金额:
$ 30.3万 - 项目类别:
Discovery Grants Program - Individual
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2021
- 资助金额:
$ 30.3万 - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2001486 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2112697 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Discovery Grants Program - Individual
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Discovery Grants Program - Individual
Measuring Galois Actions and Moduli Spaces
测量伽罗瓦作用和模空间
- 批准号:
1901819 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Galois representations, Moduli Spaces and Applications
伽罗瓦表示、模空间和应用
- 批准号:
RGPIN-2018-04544 - 财政年份:2018
- 资助金额:
$ 30.3万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic and Moduli Spaces around Galois-Teichmueller tower
Galois-Teichmueller 塔周围的算术和模空间
- 批准号:
21340009 - 财政年份:2009
- 资助金额:
$ 30.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)