Cooling Flows and Thermal Conduction in Galaxy-Cluster Plasmas
星系团等离子体中的冷却流和热传导
基本信息
- 批准号:0098086
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AST 0098086ChandranGalaxy clusters are among the largest organized structures in the observed universe and play an important role in our understanding of the evolution of the universe as a whole. Intriguingly, these clusters possess vast quantities of plasma (hot ionized gas) in the enormous spaces between their galaxies. Typically, there is much more mass in a cluster's plasma than in all the stars in all the galaxies within a cluster. Because this plasma is such an important constituent of a cluster, its evolution poses an important and challenging problem for astronomers.With the advent of x-ray satellites, astronomers discovered that intracluster plasmas cool by emitting huge amounts of high energy x-rays. As the plasma within a cluster cools, the pressure within the plasma decreases, which enables gravity to compress the plasma and force it inwards towards the cluster's center. The rate at which plasma flows inwards is currently the subject of considerable controversy within the astrophysical community. Some astronomers believe that the radiative cooling of intracluster plasma is offset by heating. For example, as the plasma near a cluster's center cools, heat can be conducted inwards from the hotter plasma surrounding a cluster's core. Such heating sustains the pressure of the plasma in the core, reducing the rate of inflow. Other astronomers believe that heating of cluster plasma is minimal, so that large quantities of intracluster plasma are accreted towards a cluster's center. This project will help resolve this controversy by determining the efficiency of thermal conduction in galaxy clusters. The subtlety is that intracluster plasmas are turbulent and magnetized. The particles which carry heat from hot regions to cold regions are constrained to move primarily along the magnetic field, so that if the magnetic field has a tangled topology, the transport of heat is slowed. This project will use numerical simulations of turbulent plasmas to determine the rate of heat conduction amidst such tangled magnetic fields. Funding for this project was provided by the NSF program for Extragalactic Astronomy & Cosmology (AST/EXC).***
AST0098086钱德兰星系团是观测到的宇宙中最大的有组织结构之一,在我们理解整个宇宙的演化过程中发挥着重要作用。有趣的是,这些星系团在星系之间的巨大空间中拥有大量的等离子体(热电离气体)。通常,一个星系团的等离子体中的质量比一个星系团内所有星系中的所有恒星的质量都要大得多。由于这种等离子体是星系团的重要组成部分,它的演化对天文学家来说是一个重要而具有挑战性的问题。随着X射线卫星的出现,天文学家发现星系团内的等离子体通过发射大量高能X射线来冷却。当星系团内的等离子体冷却时,等离子体内的压力降低,这使得重力能够压缩等离子体并迫使其向内朝向星系团的中心。等离子体向内流动的速度目前在天体物理界引起了相当大的争议。一些天文学家认为星系团内等离子体的辐射冷却被加热所抵消。例如,当星系团中心附近的等离子体冷却时,热量可以从星系团核心周围较热的等离子体向内传导。这样的加热维持了核心中等离子体的压力,降低了流入的速度。其他天文学家认为,星系团等离子体的加热很小,因此大量的星系团内等离子体向星系团的中心聚集。该项目将通过确定星系团中热传导的效率来帮助解决这一争议。微妙之处在于星系团内的等离子体是湍流和磁化的。将热从热区带到冷区的粒子被约束主要沿着磁场移动,因此如果磁场具有纠缠的拓扑结构,热量的传输就会减慢。这个项目将使用湍流等离子体的数值模拟来确定在这种纠缠的磁场中的热传导速度。该项目的资金由NSF河外天文与宇宙学计划(AST/EXC)提供。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Chandran其他文献
Benjamin Chandran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Chandran', 18)}}的其他基金
Intermittency and Ion Heating in Reduced Magnetohydrodynamic Turbulence
减少磁流体动力湍流中的间歇和离子加热
- 批准号:
1500041 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
SHINE: Incorporating 3D Reduced Magnetohydrodynamics (RMHD) Turbulence Simulations and Kinetic Plasma Physics into a Two-Fluid Model of the Solar Wind
SHINE:将 3D 简化磁流体动力学 (RMHD) 湍流模拟和动力学等离子体物理学纳入太阳风的双流体模型
- 批准号:
1258998 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Strong Alfven-Wave Turbulence with Cross Helicity
具有交叉螺旋度的强阿尔文波湍流
- 批准号:
1003451 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
SHINE: Turbulence and Perpendicular Ion Heating in the Corona and Solar Wind
闪耀:日冕和太阳风中的湍流和垂直离子加热
- 批准号:
0851005 - 财政年份:2009
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Fundamental investigations of compressible MHD turbulence
可压缩 MHD 湍流的基础研究
- 批准号:
0613622 - 财政年份:2006
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Galaxy-Cluster Baryons and the Cooling-Flow Problem
星系团重子和冷却流问题
- 批准号:
0507399 - 财政年份:2005
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Galaxy-Cluster Baryons and the Cooling-Flow Problem
星系团重子和冷却流问题
- 批准号:
0549577 - 财政年份:2005
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAREER: Fluid-thermal-structural interactions of compressible turbulent flows over flexible panels
职业:柔性面板上可压缩湍流的流体-热-结构相互作用
- 批准号:
2143014 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Change in the nature and enhancement of Brownian motion in shear flows caused by the non-modal growth of thermal fluctuations
热波动非模态增长引起的剪切流布朗运动性质的变化和增强
- 批准号:
506557030 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Research Grants
Measuring system for flows and thermal comfort indoors
室内流量和热舒适度测量系统
- 批准号:
460580014 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Major Research Instrumentation
3D thermal/flow measurement for active control of internal flows in drops
3D 热/流量测量,用于主动控制液滴内部流量
- 批准号:
20K14667 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Application of thermal mixing on sewer pipe inspection in high flows
热混合在大流量污水管道检查中的应用
- 批准号:
538895-2019 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Collaborative Research and Development Grants
Numerical method for capturing the thermal boundary of supercritical fluid flows around complex geometries
捕获复杂几何形状周围超临界流体流动热边界的数值方法
- 批准号:
16K18007 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Thermal transport in multi-phase flows for concentrating solar applications
聚光太阳能应用中多相流的热传输
- 批准号:
LP150101189 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别:
Linkage Projects
Thermal-fluid Behavior of Two-phase flows for Propellant Management in Upper Stage Propulsion System
上级推进系统中推进剂管理的两相流的热流体行为
- 批准号:
15H04198 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)