Motives and Algebraic Groups
动机和代数群
基本信息
- 批准号:0098111
- 负责人:
- 金额:$ 9.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-15 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI of this project will continue to work on problems in algebraic group theory using three algebraic cohomology theories having topological origin: motivic cohomology, algebraic K-theory and algebraic cobordism. The PI proposes to work on three relatively independent topics. The first topic is devoted to the rationality problem of algebraic groups and deals with motivic cohomology. The PI expects to find a Postnikov tower for the motive of a simply connected group involving motives of projective homogeneous varieties. The second topic is related to algebraic cobordism. The PI sees the opportunity to use this theory in order to approach the general Rost's degree formula. The latter has many applications in the theory of homogeneous spaces of algebraic groups. The third topic, the essential dimension, although seemingly different from the others, nevertheless, involves the phenomenon of compression of algebraic varieties and hence is closely related to the second topic. The PI proposes to use degree formulas for the computation of essential dimensions of algebraic groups.The area of this project lies between algebraic geometry, the branch of mathematics devoted to geometric objects called algebraic varieties and described by polynomial equations, and algebraic topology where one studies continuously varying families of structures called topological spaces. Translating the methods of topology from topological spaces to algebraic varieties gives new tools to solve problems in algebraic geometry. Much of this project is about using techniques that are of a topological nature to obtain a better understanding of certain problems in algebraic geometry.
这个项目的PI将继续使用三个具有拓扑起源的代数上同调理论来研究代数群论中的问题:Motivic上同调、代数K-理论和代数上同调论。国际和平研究所建议就三个相对独立的主题开展工作。第一个主题致力于代数群的合理性问题,并处理动机上同调。PI期望为一个单连通群的动机找到一个波斯尼科夫塔,该群的动机涉及射影齐次簇的动机。第二个话题是与代数余边法有关的。PI看到了使用这一理论的机会,以便接近一般的罗斯特学位公式。后者在代数群的齐性空间理论中有许多应用。第三个主题,本质维度,虽然看似不同于其他主题,但却涉及代数簇的压缩现象,因此与第二个主题密切相关。PI建议使用度公式来计算代数群的本质维度。这个项目的范围介于代数几何学和代数拓扑学之间,代数几何学是专门研究称为代数簇的几何对象并用多项式方程描述的数学分支,而代数拓扑学研究的是称为拓扑空间的连续变化的结构族。将拓扑学的方法从拓扑空间转化为代数变体,为解决代数几何中的问题提供了新的工具。这个项目的大部分内容是关于使用具有拓扑学性质的技术来更好地理解代数几何中的某些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Merkurjev其他文献
Negligible degree two cohomology of finite groups
- DOI:
10.1016/j.jalgebra.2022.07.039 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Matthew Gherman;Alexander Merkurjev - 通讯作者:
Alexander Merkurjev
Essential $$p$$ -dimension of split simple groups of type $$A_n$$
- DOI:
10.1007/s00208-012-0886-x - 发表时间:
2012-12-20 - 期刊:
- 影响因子:1.400
- 作者:
Vladimir Chernousov;Alexander Merkurjev - 通讯作者:
Alexander Merkurjev
Alexander Merkurjev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Merkurjev', 18)}}的其他基金
Cohomological Invariants and Motives of Classifying Spaces
上同调不变量和分类空间的动机
- 批准号:
1801530 - 财政年份:2018
- 资助金额:
$ 9.67万 - 项目类别:
Continuing Grant
Special Meeting: Torsors, Nonassociative algebras and Cohomological invariants Thematic Program at the Fields Institute Toronto January - June 2013
特别会议:Torsors、非结合代数和上同调不变量 多伦多菲尔兹研究所主题项目 2013 年 1 月至 6 月
- 批准号:
1222637 - 财政年份:2012
- 资助金额:
$ 9.67万 - 项目类别:
Standard Grant
Essential Dimension and Cohomological Invariants of Algebraic Groups
代数群的本质维数和上同调不变量
- 批准号:
1160206 - 财政年份:2012
- 资助金额:
$ 9.67万 - 项目类别:
Continuing Grant
Algebraic Cycles On Splitting Varieties
分裂簇上的代数环
- 批准号:
0652316 - 财政年份:2007
- 资助金额:
$ 9.67万 - 项目类别:
Continuing Grant
Algebraic Cycles on Homogeneous Varieties
齐次簇上的代数圈
- 批准号:
0355166 - 财政年份:2004
- 资助金额:
$ 9.67万 - 项目类别:
Continuing Grant
Algebraic K-Theory and Algebraic Groups
代数 K 理论和代数群
- 批准号:
9801646 - 财政年份:1998
- 资助金额:
$ 9.67万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
- 批准号:
23K12951 - 财政年份:2023
- 资助金额:
$ 9.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 9.67万 - 项目类别:
Standard Grant
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 9.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MPS-Ascend: The C*-Algebraic Mackey Bijection for Real Reductive Groups
MPS-Ascend:实数约简群的 C*-代数 Mackey 双射
- 批准号:
2213097 - 财政年份:2022
- 资助金额:
$ 9.67万 - 项目类别:
Fellowship Award
Combinatorial Algebraic Geometry for Spectral Theory and Galois Groups
谱论和伽罗瓦群的组合代数几何
- 批准号:
2201005 - 财政年份:2022
- 资助金额:
$ 9.67万 - 项目类别:
Standard Grant
Graphs, Designs, Codes and Groups: Topics in Algebraic Combinatorics
图、设计、代码和群:代数组合主题
- 批准号:
RGPIN-2016-05397 - 财政年份:2022
- 资助金额:
$ 9.67万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2022
- 资助金额:
$ 9.67万 - 项目类别:
Discovery Grants Program - Individual
Canonical dimension and actions of finite groups on algebraic varieties
代数簇上有限群的规范维数和作用
- 批准号:
498240045 - 财政年份:2022
- 资助金额:
$ 9.67万 - 项目类别:
Heisenberg Grants
Complete reducibility in algebraic groups
代数群的完全可约性
- 批准号:
EP/W000466/1 - 财政年份:2022
- 资助金额:
$ 9.67万 - 项目类别:
Research Grant