Algebraic Cycles on Homogeneous Varieties
齐次簇上的代数圈
基本信息
- 批准号:0355166
- 负责人:
- 金额:$ 26.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0355166Alexander MerkkurjevThe proposal covers a wide range of aspects in algebra such as algebraic geometry, algebraic groups, and homogeneous varieties. The investigator proposes to study motivic cohomology groups and motivic decomposition of homogeneous varieties such as projective homogeneous varieties and algebraic groups. The investigator will seek to produce constructions associated to objects arising in algebraic geometry, which closely reflect subtle aspects of algebraic cycles. In particular, the investigator proposes to compute motivic cohomology groups of simplicial objects associated to projective homogeneous varieties. The second topic of the proposal involves introduction of the notion of essential dimension and incompressible varieties that provide new interrelations between algebraic varieties given by algebraic cycles.The area of this project lies between algebraic geometry, the branch of mathematics devoted to geometric objects coming from graphing polynomial equations and called algebraic varieties, and algebraic topology that concerns continuously varying families of structures called topological spaces. Translating the methods of topology from topological spaces to algebraic varieties gives new tools to solve problems in algebraic geometry. Much of the proposed work is to use topological techniques and ideas to get better understanding of some problems of algebraic geometry.
DMS-0355166 Alexander Merkkurjev该提案涵盖了代数的广泛方面,如代数几何,代数群和齐次簇。 研究者提出研究齐次簇的动机上同调群和动机分解,如射影齐次簇和代数群。调查人员将寻求产生与代数几何中出现的对象相关的结构,这些结构密切反映了代数循环的微妙方面。特别是,调查人员提出计算motivic上同调群的单纯对象相关联的投影齐性品种。该提案的第二个主题涉及引入基本维数和不可压缩簇的概念,这些概念提供了由代数圈给出的代数簇之间的新的相互关系。该项目的领域位于代数几何,数学的分支,致力于从图形多项式方程和称为代数簇的几何对象,和代数拓扑学,涉及连续变化的结构族,称为拓扑空间。将拓扑空间的拓扑方法转化为代数簇的拓扑方法,为代数几何问题的求解提供了新的工具。大部分的工作建议是使用拓扑技术和思想,以更好地理解一些问题的代数几何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Merkurjev其他文献
Negligible degree two cohomology of finite groups
- DOI:
10.1016/j.jalgebra.2022.07.039 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Matthew Gherman;Alexander Merkurjev - 通讯作者:
Alexander Merkurjev
Essential $$p$$ -dimension of split simple groups of type $$A_n$$
- DOI:
10.1007/s00208-012-0886-x - 发表时间:
2012-12-20 - 期刊:
- 影响因子:1.400
- 作者:
Vladimir Chernousov;Alexander Merkurjev - 通讯作者:
Alexander Merkurjev
Alexander Merkurjev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Merkurjev', 18)}}的其他基金
Cohomological Invariants and Motives of Classifying Spaces
上同调不变量和分类空间的动机
- 批准号:
1801530 - 财政年份:2018
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Special Meeting: Torsors, Nonassociative algebras and Cohomological invariants Thematic Program at the Fields Institute Toronto January - June 2013
特别会议:Torsors、非结合代数和上同调不变量 多伦多菲尔兹研究所主题项目 2013 年 1 月至 6 月
- 批准号:
1222637 - 财政年份:2012
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
Essential Dimension and Cohomological Invariants of Algebraic Groups
代数群的本质维数和上同调不变量
- 批准号:
1160206 - 财政年份:2012
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Algebraic Cycles On Splitting Varieties
分裂簇上的代数环
- 批准号:
0652316 - 财政年份:2007
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Algebraic K-Theory and Algebraic Groups
代数 K 理论和代数群
- 批准号:
9801646 - 财政年份:1998
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
相似海外基金
Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
- 批准号:
DP240102899 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Discovery Projects
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Bloom and bust: seasonal cycles of phytoplankton and carbon flux
繁荣与萧条:浮游植物和碳通量的季节性周期
- 批准号:
2910180 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Studentship
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
CAREER: Understanding how Earth's coupled carbon and sulfur cycles evolved after the oxygenation of the atmosphere
职业:了解地球的耦合碳和硫循环在大气氧化后如何演变
- 批准号:
2339237 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
Improving Functional Regeneration and Engraftment of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells by Brief Cycles of Transient Reprogramming
通过短暂的瞬时重编程周期改善人诱导多能干细胞来源的心肌细胞的功能再生和植入
- 批准号:
24K11267 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unraveling oceanic multi-element cycles using single cell ionomics
使用单细胞离子组学揭示海洋多元素循环
- 批准号:
2875388 - 财政年份:2023
- 资助金额:
$ 26.24万 - 项目类别:
Studentship














{{item.name}}会员




