Combinatorics, Probability and Computation of Finite Groups
有限群的组合学、概率和计算
基本信息
- 批准号:0100042
- 负责人:
- 金额:$ 10.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator will study finite groups from Combinatorial, Probabilistic and Computational point of view. The research will proceed in three major directions. First, the problem of generating random group elements is studied. The two major venues: Babai algorithms and the product replacement algorithm - both will be attacked by the investigator. Second problem involves recognition of the finite groups based on the random elements. Finally, third problem deals with property testing of groups is studied, by introducing random subproducts as pseudo random elements in the finite group.Finite groups can be viewed as sets of symmetries of finite objects; they are central in understanding of our universe. Finite groups are often unimaginably large, which represents both theoretical and computational difficulties for working with all its elements. Thus the information about the group is often stored in a small set of elements (generators), so that all other group elements can be obtained from these. Now the difficult problem is reversing this encoding and recovering information about the whole group from the generators. The current proposal aims at developments of the new algorithms and improvement of the existing procedures.
研究者将从组合、概率和计算的角度研究有限群。 研究将从三个主要方向进行。 首先研究了随机群元的生成问题。两个主要场所:巴拜算法和产品替换算法-都将受到调查人员的攻击。 第二个问题是基于随机元的有限群的识别。最后,第三个问题涉及群的性质测试,通过在有限群中引入随机子积作为伪随机元来研究。有限群可以被看作是有限对象的对称集合;它们是理解我们的宇宙的核心。 有限群通常大得难以想象,这代表了处理其所有元素的理论和计算困难。 因此,关于群的信息通常存储在一个小的元素集合(生成元)中,以便所有其他的群元素都可以从这些元素中获得。 现在的难题是逆转这种编码,并从生成器中恢复整个组的信息。 目前的建议旨在开发新的算法和改进现有的程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Pak其他文献
The product replacement algorithm and Kazhdan’s property (T)
产品替换算法和 Kazhdan 的属性 (T)
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
A. Lubotzky;Igor Pak - 通讯作者:
Igor Pak
A short proof of rigidity of convex polytopes
- DOI:
10.1007/s11202-006-0081-y - 发表时间:
2006-07-01 - 期刊:
- 影响因子:0.700
- 作者:
Igor Pak - 通讯作者:
Igor Pak
Signed combinatorial interpretations in algebraic combinatorics
代数组合学中的有符号组合解释
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Igor Pak;Colleen Robichaux - 通讯作者:
Colleen Robichaux
Exploring Mazes at Random
- DOI:
10.1007/s00283-025-10439-5 - 发表时间:
2025-07-30 - 期刊:
- 影响因子:0.400
- 作者:
Nikita Gladkov;Igor Pak - 通讯作者:
Igor Pak
Monotone parameters on Cayley graphs of finitely generated groups
有限生成群凯莱图上的单调参数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. Kassabov;Igor Pak - 通讯作者:
Igor Pak
Igor Pak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Pak', 18)}}的其他基金
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
- 批准号:
2302173 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Combinatorial Complexity Problems
合作研究:AF:小:组合复杂性问题
- 批准号:
2007891 - 财政年份:2020
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Combinatorics and Complexity of Kronecker coefficients
克罗内克系数的组合学和复杂性
- 批准号:
1363193 - 财政年份:2014
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Bijective Combinatorics of Young Tableaux
年轻画面的双射组合
- 批准号:
1001842 - 财政年份:2010
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Combinatorial Enumeration and Random Generation
组合枚举和随机生成
- 批准号:
0837923 - 财政年份:2008
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Combinatorial Enumeration and Random Generation
组合枚举和随机生成
- 批准号:
0402028 - 财政年份:2004
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9705906 - 财政年份:1997
- 资助金额:
$ 10.85万 - 项目类别:
Fellowship Award
相似海外基金
Conference: Northeast Probability Seminar 2023-2025
会议:东北概率研讨会2023-2025
- 批准号:
2331449 - 财政年份:2024
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Conference: Cincinnati Symposium on Probability 2024
会议:2024 年辛辛那提概率研讨会
- 批准号:
2413604 - 财政年份:2024
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Conference: Midwest Probability Colloquium 2023-2025
会议:2023-2025 年中西部概率研讨会
- 批准号:
2335784 - 财政年份:2024
- 资助金额:
$ 10.85万 - 项目类别:
Continuing Grant
Random Matrix Theory: Free Probability Theory and beyond
随机矩阵理论:自由概率论及其他理论
- 批准号:
23K20800 - 财政年份:2024
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
The research on the stability of the density functions for the existence probability of orbits
轨道存在概率密度函数的稳定性研究
- 批准号:
23K03185 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimation of probability and maximum potential intensity of extreme coastal hazards using global and regional integrated models
使用全球和区域综合模型估计极端沿海灾害的概率和最大潜在强度
- 批准号:
23H00196 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Conference: Northeast Probability Seminar 2022
会议:2022年东北概率研讨会
- 批准号:
2243505 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
- 批准号:
2317172 - 财政年份:2023
- 资助金额:
$ 10.85万 - 项目类别:
Standard Grant