Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
基本信息
- 批准号:2317172
- 负责人:
- 金额:$ 43.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Design of complex systems and engineered artifacts is often confronted with uncertainties in manufacturing processes, material properties, and operating environments. Traditional design approaches often rely on heuristically derived safety factors and do not quantitatively address the statistical variation of a system response. This project will promote scientific progress through foundational research on the design optimization of complex engineering systems and structures in the presence of statistically dependent uncertainty. Novel methods will be created to determine the best design alternative, considering uncertain system behavior, influenced by dependent input variables. Potential engineering applications include ground vehicle design for improved durability and crashworthiness, fatigue- and fracture-resistant design for aerospace applications, and design of microelectronic packaging under harsh environments. The results from this research will contribute to national prosperity through the development of complex systems and products that are more durable, robust, and reliable. Beyond engineering, the results from this research will benefit the U.S. economy and society through potential application in areas such as energy, finance and management, and transportation and logistics, where optimization under uncertainty plays a vital role. This research is multi-disciplinary, spanning several fields, including engineering design, applied mathematics, and probability and statistics. It will foster broad participation of underrepresented groups in research and positively impact engineering education.The chief goal of this project is to conduct research in the creation of efficient computational algorithms and practical computational tools for robust and reliability-based design optimization (RDO and RBDO) of high-dimensional complex systems subject to random input resulting from an arbitrary dependent probability distribution. The research plan comprises three scientific objectives: (1) novel mathematical developments of a generalized analysis-of-variance expansion, leading to a generalized spline dimensional decomposition (GSDD) for tackling dependent random variables directly; (2) new scalable algorithms of the GSDD method for calculating relevant probabilistic response characteristics and design sensitivities of a high-dimensional, complex mechanical system; and (3) innovative GSDD-driven optimization algorithms for efficiently solving high-dimensional RDO and RBDO problems, including stochastic shape and topology designs. This research is innovative for several reasons. First, the GSDD method will account for truly arbitrary, dependent probability distributions of random input, heretofore unavailable to the scientific community. Second, it will address discontinuous or non-smooth performance functions, if they exist, using hundreds of random/design variables, thereby diminishing the curse of dimensionality to a great extent. Third, the synchronous formulation of the statistical moment, reliability, and design sensitivity analyses, which requires a single or at most a few stochastic simulation(s) for all possible designs, will markedly accelerate the design optimization process, potentially producing breakthrough solutions to RDO/RBDO problems. The implementation of the probabilistic methods will lead to next-generation computational tools, bridging stress analysis, stochastic simulation, and optimization to form a seamless design pipeline of the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂系统和工程工件的设计经常面临制造过程、材料特性和操作环境中的不确定性。传统的设计方法通常依赖于启发式推导的安全系数,不能定量地处理系统响应的统计变化。该项目将通过对存在统计依赖不确定性的复杂工程系统和结构的设计优化进行基础研究,促进科学进步。新的方法将被创建,以确定最佳的设计方案,考虑不确定的系统行为,受相关输入变量的影响。潜在的工程应用包括用于提高耐久性和耐撞性的地面车辆设计,用于航空航天应用的抗疲劳和抗断裂设计,以及恶劣环境下的微电子封装设计。这项研究的结果将通过开发更耐用、更坚固、更可靠的复杂系统和产品,为国家繁荣做出贡献。在工程领域之外,这项研究的结果将通过在能源、金融和管理、运输和物流等领域的潜在应用,使美国经济和社会受益,在这些领域,不确定性下的优化发挥着至关重要的作用。本研究涉及多个领域,包括工程设计、应用数学、概率论与统计学。它将促进代表性不足的群体广泛参与研究,并对工程教育产生积极影响。该项目的主要目标是研究创建高效的计算算法和实用的计算工具,用于基于鲁棒性和可靠性的设计优化(RDO和RBDO)的高维复杂系统,这些系统受到任意相关概率分布的随机输入的影响。研究计划包括三个科学目标:(1)广义方差分析展开的新数学发展,导致直接处理相关随机变量的广义样条维数分解(GSDD);(2)计算高维复杂机械系统相关概率响应特性和设计灵敏度的GSDD方法的可扩展新算法;(3)创新的gsdd驱动优化算法,用于高效解决高维RDO和RBDO问题,包括随机形状和拓扑设计。这项研究之所以具有创新性,有几个原因。首先,GSDD方法将考虑到随机输入的真正任意的、依赖的概率分布,这是科学界迄今为止无法获得的。其次,它将处理不连续或非平滑的性能函数,如果它们存在的话,使用数百个随机/设计变量,从而在很大程度上减少了维度的诅咒。第三,统计力矩、可靠性和设计灵敏度分析的同步公式需要对所有可能的设计进行一次或最多几个随机模拟,这将显著加快设计优化过程,有可能为RDO/RBDO问题提供突破性的解决方案。概率方法的实施将导致下一代计算工具,连接应力分析,随机模拟和优化,形成未来的无缝设计管道。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharif Rahman其他文献
Frequency of COVID-19 Infection in Patients with Sudden Loss of Smell
嗅觉突然丧失患者感染 COVID-19 的频率
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.1
- 作者:
Md Harun Ar Rashid Talukder;Sharif Rahman;A. Taous;Md. Abul Hasnat Joarder - 通讯作者:
Md. Abul Hasnat Joarder
Stochastic multiscale fracture analysis of three-dimensional functionally graded composites
- DOI:
10.1016/j.engfracmech.2010.09.006 - 发表时间:
2011-01-01 - 期刊:
- 影响因子:
- 作者:
Sharif Rahman;Arindam Chakraborty - 通讯作者:
Arindam Chakraborty
Higher-order moments of spline chaos expansion
- DOI:
10.1016/j.probengmech.2024.103666 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:
- 作者:
Sharif Rahman - 通讯作者:
Sharif Rahman
Sharif Rahman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharif Rahman', 18)}}的其他基金
High-Dimensional Stochastic Design Optimization by Spline Dimensional Decomposition
通过样条维分解进行高维随机设计优化
- 批准号:
1933114 - 财政年份:2019
- 资助金额:
$ 43.1万 - 项目类别:
Standard Grant
CDS&E: Stochastic Isogeometric Analysis by Hierarchical B-Spline Sparse Grids
CDS
- 批准号:
1607398 - 财政年份:2016
- 资助金额:
$ 43.1万 - 项目类别:
Standard Grant
Stochastic Optimization for Design under Uncertainty with Dependent Probability Measures
具有相关概率测量的不确定性下设计的随机优化
- 批准号:
1462385 - 财政年份:2015
- 资助金额:
$ 43.1万 - 项目类别:
Standard Grant
Novel Computational Methods for Solving Random Eigenvalue Problems
解决随机特征值问题的新颖计算方法
- 批准号:
1130147 - 财政年份:2011
- 资助金额:
$ 43.1万 - 项目类别:
Standard Grant
Reliability-Based Design Optimization of Large-Scale Complex Systems
大型复杂系统基于可靠性的设计优化
- 批准号:
0969044 - 财政年份:2010
- 资助金额:
$ 43.1万 - 项目类别:
Standard Grant
A New Decomposition Method for Solving Stochastic Eigenvalue Problems in Computational Dynamics
求解计算动力学中随机特征值问题的新分解方法
- 批准号:
0653279 - 财政年份:2007
- 资助金额:
$ 43.1万 - 项目类别:
Standard Grant
Fatigue Durability and Reliability of Functionally Graded Materials
功能梯度材料的疲劳耐久性和可靠性
- 批准号:
0409463 - 财政年份:2004
- 资助金额:
$ 43.1万 - 项目类别:
Standard Grant
Development of New Dimension-Reduction Methods for Reliability, Simulation, and Design of Complex Engineering Systems
开发复杂工程系统可靠性、仿真和设计的新降维方法
- 批准号:
0355487 - 财政年份:2004
- 资助金额:
$ 43.1万 - 项目类别:
Continuing Grant
Probabilistic Simulation of Fracture by Meshless Methods
无网格方法的断裂概率模拟
- 批准号:
9900196 - 财政年份:1999
- 资助金额:
$ 43.1万 - 项目类别:
Continuing Grant
CAREER: Stochastic Fracture Mechanics for Nonlinear Structures
职业:非线性结构的随机断裂力学
- 批准号:
9733058 - 财政年份:1998
- 资助金额:
$ 43.1万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
- 批准号:
10660234 - 财政年份:2023
- 资助金额:
$ 43.1万 - 项目类别:
Generation of single cell multi-omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
- 批准号:
2764861 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Studentship
Generation of single cell multi omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
- 批准号:
BB/X511389/1 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Training Grant
Novel methods for integrative computational biology
综合计算生物学的新方法
- 批准号:
RGPIN-2018-05757 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Discovery Grants Program - Individual
Novel domain-specific languages and compiler optimization methods for computational biology
计算生物学的新颖的特定领域语言和编译器优化方法
- 批准号:
RGPIN-2019-04973 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Discovery Grants Program - Individual
Designing and synthesising new classes of phosphatase inhibitor using novel computational methods
使用新颖的计算方法设计和合成新型磷酸酶抑制剂
- 批准号:
2627865 - 财政年份:2021
- 资助金额:
$ 43.1万 - 项目类别:
Studentship
Novel domain-specific languages and compiler optimization methods for computational biology
计算生物学的新颖的特定领域语言和编译器优化方法
- 批准号:
RGPIN-2019-04973 - 财政年份:2021
- 资助金额:
$ 43.1万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
- 批准号:
2045550 - 财政年份:2021
- 资助金额:
$ 43.1万 - 项目类别:
Continuing Grant
Novel methods for integrative computational biology
综合计算生物学的新方法
- 批准号:
RGPIN-2018-05757 - 财政年份:2021
- 资助金额:
$ 43.1万 - 项目类别:
Discovery Grants Program - Individual
Novel Computational Methods for Detecting Early Right Ventricular Failure in the Tetralogy of Fallot Population
检测法洛四联症早期右心室衰竭的新计算方法
- 批准号:
10066159 - 财政年份:2020
- 资助金额:
$ 43.1万 - 项目类别: