Geometry of Real Submanifolds in Complex Space and CR Structures
复空间中实子流形的几何与CR结构
基本信息
- 批准号:0100110
- 负责人:
- 金额:$ 10.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractEberfeltIn this project, the principal investigator (PI) studies geometric, analytic, and algebraic aspects of real submanifolds in complex manifolds and, more generally, of manifolds with a CR structure. More specifically, he focuses on questions that are related to the local classification problem, which asks for a local description of the CR structure on a manifold near a distinguished point up to equivalence. For instance, for a real submanifold in complex space, one would like to know which other real submanifolds are equivalent to it by a local biholomorphic transformation. The PI studies this problem extrinsically by trying to find normal forms in classes of real submanifolds, and intrinsically as an equivalence problem for systems of differential equations. An important part of the classification problem is to understand the group of transformations preserving the structure or, more generally, the set of mappings between two given structures. The PI of this project studies the local stability group of a real submanifold in complex space, i.e. the group of local biholomorphisms preserving the real submanifold and a given distinguished point on it. He investigates under what conditions this group can be embedded as a subgroup of the jet group of a predetermined order, and seeks to describe the subgroups that arise in this way in more detail. He looks for conditions that imply coercivity results such as e.g. convergence of all formal mappings between real-analytic submanifolds, or real-analyticity of all smooth CR mappings. He also investigates closer the prolongation of the system defining CR mappings to a Pfaffian system, and explores its applications.The theory of several complex variables is a rapidly developing subject in mathematics which has applications in contemporary mathematical physics (e.g quantum field theory and string theory) as well as in engineering (e.g. control theory). The study of the geometry of real submanifolds in complex spaces, such as e.g. smooth boundaries of domains, is central to this theory, and is also related to other areas of mathematics such as partial differential equations and differential geometry. In this project, we investigate questions regarding the geometry of real submanifolds in complex space and their mappings that arise in the classification problem of such up to equivalences that preserve the complex structure of the ambient space.
AbstractEberfelt在这个项目中,主要研究者(PI)研究几何,分析和代数方面的真实的子流形在复杂的流形,更普遍的是,流形与CR结构。更具体地说,他专注于与局部分类问题有关的问题,该问题要求在流形上接近一个显著点的CR结构的局部描述,直到等价。例如,对于复空间中的一个真实的子流形,人们想知道哪些其他的真实的子流形通过局部双全纯变换与它等价。PI研究这个问题extraditionally试图找到规范形式类的真实的子流形,并在本质上作为一个等价问题的微分方程组。 分类问题的一个重要部分是理解保持结构的变换群,或者更一般地说,两个给定结构之间的映射集。该项目的PI研究复空间中真实的子流形的局部稳定群,即保持真实的子流形和其上给定的特殊点的局部双全纯群。他研究在什么条件下这个群可以嵌入预定阶的喷流群的子群,并试图更详细地描述以这种方式出现的子群。他期待的条件,意味着advervity结果,如收敛的所有正式映射之间的真正解析子流形,或真正的解析所有顺利CR映射。他还研究了更密切的延长系统定义CR映射到Pfiran系统,并探讨其应用。理论的几个复杂的变量是一个迅速发展的主题,在数学中的应用在当代数学物理(如量子场论和弦理论)以及在工程(如控制理论)。复杂空间中真实的子流形的几何研究,例如域的光滑边界,是这个理论的核心,也与其他数学领域有关,如偏微分方程和微分几何。在这个项目中,我们调查的问题,关于几何的真实的子流形在复杂的空间和他们的映射中出现的分类问题,这样的等价物,保持复杂的结构的周围空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Ebenfelt其他文献
An Inverse Problem for the Double Layer Potential
- DOI:
10.1007/bf03320998 - 发表时间:
2013-03-07 - 期刊:
- 影响因子:0.700
- 作者:
Peter Ebenfelt;Dmitry Khavinson;Harold S. Shapiro - 通讯作者:
Harold S. Shapiro
On the analyticity of CR mappings between nonminimal hypersurfaces
- DOI:
10.1007/s002080200007 - 发表时间:
2002-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Peter Ebenfelt - 通讯作者:
Peter Ebenfelt
On the Solution of the Dirichlet Problem with Rational Holomorphic Boundary Data
- DOI:
10.1007/bf03321109 - 发表时间:
2013-03-07 - 期刊:
- 影响因子:0.700
- 作者:
Peter Ebenfelt;Michael Viscardi - 通讯作者:
Michael Viscardi
Finite jet determination of CR embeddings
- DOI:
10.1007/bf02922071 - 发表时间:
2004-06-01 - 期刊:
- 影响因子:1.500
- 作者:
Peter Ebenfelt;Bernhard Lamel - 通讯作者:
Bernhard Lamel
The Goursat problem for a generalized Helmholtz operator in the plane
- DOI:
10.1007/s11854-008-0033-5 - 发表时间:
2008-09-05 - 期刊:
- 影响因子:0.900
- 作者:
Peter Ebenfelt;Hermann Render - 通讯作者:
Hermann Render
Peter Ebenfelt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Ebenfelt', 18)}}的其他基金
Invariants in Several Complex Variables and Complex Geometry
多个复变量和复几何中的不变量
- 批准号:
2154368 - 财政年份:2022
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Geometry of Invariants and Mappings in Several Complex Variables
几个复杂变量中不变量的几何和映射
- 批准号:
1900955 - 财政年份:2019
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Structure of Mappings in Several Complex Variables and Cauchy-Riemann Geometry
多复变量映射结构与柯西-黎曼几何
- 批准号:
1600701 - 财政年份:2016
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Mappings in Several Complex Variables and CR geometry
多个复杂变量和 CR 几何中的映射
- 批准号:
1301282 - 财政年份:2013
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Mappings of real submanifolds in complex space, CR geometry, and analytic PDE
复空间中真实子流形的映射、CR 几何和解析 PDE
- 批准号:
1001322 - 财政年份:2010
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Southern California Analysis and Partial Differential Equation Conference Series
南加州分析与偏微分方程会议系列
- 批准号:
0852534 - 财政年份:2009
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Mappings of real submanifolds in complex space, CR geometry, and analytic PDE
复空间中真实子流形的映射、CR 几何和解析 PDE
- 批准号:
0701121 - 财政年份:2007
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Geometry of Real Submanifolds in Complex Space and CR Structures
复空间中实子流形的几何与CR结构
- 批准号:
0401215 - 财政年份:2004
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mappings of real submanifolds in complex space, CR geometry, and analytic PDE
复空间中真实子流形的映射、CR 几何和解析 PDE
- 批准号:
1001322 - 财政年份:2010
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Mappings of real submanifolds in complex space, CR geometry, and analytic PDE
复空间中真实子流形的映射、CR 几何和解析 PDE
- 批准号:
0701121 - 财政年份:2007
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Real Submanifolds and Holomorphic Mappings in Geometric Function Theory
几何函数理论中的实子流形和全纯映射
- 批准号:
0705426 - 财政年份:2007
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Geometry of Real Submanifolds in Complex Space and CR Structures
复空间中实子流形的几何与CR结构
- 批准号:
0401215 - 财政年份:2004
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Real Submanifolds and Holomorphic Mappings in Geometric Function Theory
几何函数理论中的实子流形和全纯映射
- 批准号:
0305474 - 财政年份:2003
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
- 批准号:
0196090 - 财政年份:2000
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
- 批准号:
0072003 - 财政年份:2000
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
- 批准号:
0196036 - 财政年份:2000
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
- 批准号:
0096047 - 财政年份:1999
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
- 批准号:
9704835 - 财政年份:1997
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant














{{item.name}}会员




