Geometry of Real Submanifolds in Complex Space and CR Structures

复空间中实子流形的几何与CR结构

基本信息

  • 批准号:
    0401215
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

DMS 0401215PI: Peter EbenfeltUC San DiegoGeometry of real submanifolds in complex space . . .Abstract:The principal investigator will study geometric, analytic, and algebraic aspects of generic real submanifolds in complex manifolds (or, more generally, of manifolds with a CR structure) and their mappings. He will investigate the existence, uniqueness, and regularity of CR mappings between given CR manifolds, as well as geometric questions that arise in connection with this study.More specifically, the proposer will focus on these problems in the context of studying CR embeddings of a strictly pseudoconvex hypersurface into another of higher dimension. In contrast to the case in which the manifolds are of the same dimension, little is known here and there are a number of unresolved but very basic questions. The PI will also study geometric properties ofCR mappings between generic submanifolds of higher codimension, as well as continuing his study of CR mappings between real hypersurfaces of infinite type (in the sense of Kohn and Bloom--Graham) by investigating closer the prolongation of the system defining CR mappings to a singular Pfaffian system on the jet bundle. Another problem that the PI plans to study is that of normal forms for real hypersurfaces in complex manifolds.The study of real submanifolds in complex manifolds is central to the theory of several complex variables, and has close connections to other areas of mathematics, such as partial differential equations, differential geometry, and algebraic geometry, as well as to contemporary topics in mathematical physics. A real submanifold of a complex manifold inherits, from its ambient manifold, a partial complex structure, called a CR (for Cauchy-Riemann) structure, which in general is much more rigid than the complex structure of the ambient manifold. Much of the research in this project is motivated by the desire to classify such CR structures up to equivalences which leave the ambient manifold invariant. This is one of the most fundamental questions in this field.
DMS 0401215PI:Peter EbenFeltUC San Diego复空间中实子流形的几何。。摘要:主要研究人员将研究复流形(或更一般地,具有CR结构的流形)中一般实子流形的几何、解析和代数方面及其映射。他将研究给定CR流形之间CR映射的存在性、唯一性和正则性,以及与此研究相关的几何问题。更具体地说,作者将在研究一个严格伪凸超曲面到另一个高维超曲面的CR嵌入的背景下集中讨论这些问题。与流形具有相同维度的情况相比,这里知之甚少,有许多尚未解决但非常基本的问题。PI还将研究高余维类属子流形之间CR映射的几何性质,并通过更密切地研究定义CR映射的系统到射丛上的奇异Pfaffian系统的延拓来继续他对无穷型实超曲面(在Kohn和Bloom-Graham意义下)之间的CR映射的研究。PI计划研究的另一个问题是复流形中实超曲面的范式问题。复流形中实子流形的研究是几个复变量理论的核心,并与其他数学领域,如偏微分方程组、微分几何和代数几何,以及数学物理的当代主题有着密切的联系。复流形的实子流形从其环境流形继承了一个部分复结构,称为CR(柯西-黎曼结构),它通常比环境流形的复结构要坚硬得多。这个项目中的许多研究都是出于这样一种愿望,即将这种CR结构分类到使环境流形保持不变的等价。这是该领域最基本的问题之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Ebenfelt其他文献

An Inverse Problem for the Double Layer Potential
  • DOI:
    10.1007/bf03320998
  • 发表时间:
    2013-03-07
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Peter Ebenfelt;Dmitry Khavinson;Harold S. Shapiro
  • 通讯作者:
    Harold S. Shapiro
On the analyticity of CR mappings between nonminimal hypersurfaces
  • DOI:
    10.1007/s002080200007
  • 发表时间:
    2002-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Peter Ebenfelt
  • 通讯作者:
    Peter Ebenfelt
On the Solution of the Dirichlet Problem with Rational Holomorphic Boundary Data
Finite jet determination of CR embeddings
  • DOI:
    10.1007/bf02922071
  • 发表时间:
    2004-06-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Peter Ebenfelt;Bernhard Lamel
  • 通讯作者:
    Bernhard Lamel
The Goursat problem for a generalized Helmholtz operator in the plane
  • DOI:
    10.1007/s11854-008-0033-5
  • 发表时间:
    2008-09-05
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Peter Ebenfelt;Hermann Render
  • 通讯作者:
    Hermann Render

Peter Ebenfelt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Ebenfelt', 18)}}的其他基金

Invariants in Several Complex Variables and Complex Geometry
多个复变量和复几何中的不变量
  • 批准号:
    2154368
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Geometry of Invariants and Mappings in Several Complex Variables
几个复杂变量中不变量的几何和映射
  • 批准号:
    1900955
  • 财政年份:
    2019
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Structure of Mappings in Several Complex Variables and Cauchy-Riemann Geometry
多复变量映射结构与柯西-黎曼几何
  • 批准号:
    1600701
  • 财政年份:
    2016
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Mappings in Several Complex Variables and CR geometry
多个复杂变量和 CR 几何中的映射
  • 批准号:
    1301282
  • 财政年份:
    2013
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Mappings of real submanifolds in complex space, CR geometry, and analytic PDE
复空间中真实子流形的映射、CR 几何和解析 PDE
  • 批准号:
    1001322
  • 财政年份:
    2010
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Southern California Analysis and Partial Differential Equation Conference Series
南加州分析与偏微分方程会议系列
  • 批准号:
    0852534
  • 财政年份:
    2009
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Mappings of real submanifolds in complex space, CR geometry, and analytic PDE
复空间中真实子流形的映射、CR 几何和解析 PDE
  • 批准号:
    0701121
  • 财政年份:
    2007
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Geometry of Real Submanifolds in Complex Space and CR Structures
复空间中实子流形的几何与CR结构
  • 批准号:
    0100110
  • 财政年份:
    2001
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mappings of real submanifolds in complex space, CR geometry, and analytic PDE
复空间中真实子流形的映射、CR 几何和解析 PDE
  • 批准号:
    1001322
  • 财政年份:
    2010
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Mappings of real submanifolds in complex space, CR geometry, and analytic PDE
复空间中真实子流形的映射、CR 几何和解析 PDE
  • 批准号:
    0701121
  • 财政年份:
    2007
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Real Submanifolds and Holomorphic Mappings in Geometric Function Theory
几何函数理论中的实子流形和全纯映射
  • 批准号:
    0705426
  • 财政年份:
    2007
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Geometric Function Theory
几何函数理论中的实子流形和全纯映射
  • 批准号:
    0305474
  • 财政年份:
    2003
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Geometry of Real Submanifolds in Complex Space and CR Structures
复空间中实子流形的几何与CR结构
  • 批准号:
    0100110
  • 财政年份:
    2001
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    0196090
  • 财政年份:
    2000
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    0072003
  • 财政年份:
    2000
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    0196036
  • 财政年份:
    2000
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    0096047
  • 财政年份:
    1999
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Real Submanifolds and Holomorphic Mappings in Several Complex Variables
多个复变量中的实子流形和全纯映射
  • 批准号:
    9704835
  • 财政年份:
    1997
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了